
Quilt: Resource-aware Merging of Serverless Workflows
Yuxuan Zhang

University of Pennsylvania
Philadelphia, PA, USA

Sebastian Angel
University of Pennsylvania

Philadelphia, PA, USA

Abstract
This paper describes Quilt, a serverless optimizer that auto-
matically merges workflows that consist of many functions
(possibly in different languages) into one process thereby
avoiding high invocation latency, communication overhead,
and long chains of cold starts. Instead of merging all functions,
Quilt takes into account the provider’s resource constraints
to decide which functions to merge. Quilt is compatible with
existing platforms without modification (Fission, OpenWhisk,
and OpenFaaS), can merge functions in different languages
(C, C++, Swift, Go, Rust) by acting at the level of LLVM IR,
and requires no input or help from developers. Our evaluation
shows that Quilt improves median workflow completion time
by 45.63%–70.95% and throughput by 2.05×–12.87×.

ACM Reference Format:
Yuxuan Zhang and Sebastian Angel. 2025. Quilt: Resource-aware
Merging of Serverless Workflows. In ACM SIGOPS 31st Symposium
on Operating Systems Principles (SOSP ’25), October 13–16, 2025,
Seoul, Republic of Korea. ACM, New York, NY, USA, 21 pages.
https://doi.org/10.1145/3731569.3764830

1 Introduction
Serverless platforms let developers upload code for individual
functions without developers having to manage the servers
that will run these functions. The provider takes care of place-
ment, function discovery, request routing, load balancing,
scaling, failure recovery, per-function billing, etc. In exchange
for providing these benefits to customers, providers get flex-
ibility: they can place functions wherever there are idle re-
sources, and move them around to improve utilization.

When developers’ needs go beyond one function they de-
ploy workflows, which are graphs of functions that implement
the logic of an application by calling each other as needed.
Each function in the workflow is independent and is deployed
in a separate container. Workflows are a great way to enjoy
the benefits of the microservice design paradigm within the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea
© 2025 Association for Computing Machinery.
ACM ISBN 979-8-4007-1870-0/25/10. . . $15.00
https://doi.org/10.1145/3731569.3764830

Container
Caller
Func

Container
Caller
Func

Container
Callee
Func

Container
Callee
Func

API gateway

Controller

Distributed
Messaging

Profiler

Worker Worker

Container
Callee
Func

Container
Caller
Func

Database

function
invocation

Figure 1. Typical serverless function invocation path.

serverless ecosystem: applications are decomposed into small
components and different teams can work, test, and iterate
over these components independently.

The price that developers currently pay for the flexibility
and convenience afforded by serverless workflows is a re-
duction in their application’s performance. The reason is that
serverless actually exacerbates the well-known overheads of
microservice architectures whereby each microservice talks
to another via the network. In serverless workflows, as we
show in Figure 1, when a function calls another function the
invocation is actually an HTTP request sent to the destination
function. This request is received by an API gateway, who
forwards it to a controller that decides which of the existing
instances of a given function should process the request; if
there are none available, the controller must first launch an
instance and then forward the request to it. In short, func-
tion invocations in serverless (1) introduce intermediaries
(e.g., API gateway); (2) create new connections (e.g., TCP
handshake, libcurl session); and (3) sometimes run into cold
starts where a function is not currently available and must be
deployed and provisioned from scratch [39, 41].

Looking at this state of affairs would lead one to conclude
that workflows are not the right way to build larger appli-
cations. But building specialized units of code has merits
in serverless: each function can be written in a (potentially
different) suitable language, it can be reused across multiple
workflows by just using an identifier, and the provider can
do a great job scheduling it to any machine that has enough
resources (e.g., memory, CPUs) to run that specific function
rather than having to find a machine that can run the much
larger and resource demanding application.

1

https://doi.org/10.1145/3731569.3764830
https://doi.org/10.1145/3731569.3764830

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

In this paper we therefore ask: can we get the scheduling
and development flexibility afforded by having many small
functions and the performance of large monolithic applica-
tions? To answer this question we build Quilt, an optimizer
for serverless platforms that runs in the background and auto-
matically merges serverless workflows at runtime to form a
single process that avoids network and inter-process commu-
nication. Function invocations with Quilt take nanoseconds
instead of many milliseconds.

While the goal of merging functions is straightforward,
proper quilting is an art. One cannot simply merge all func-
tions in a workflow and expect to get good resource utilization
and good performance. As one example, if one merges work-
flows with many parallel functions or with functions that use
a lot of data, the resulting merged function will require too
many CPUs or too much memory, complicating placement.
This creates resource fragmentation: severless workers will
have spare resources that have to go unused because they are
not sufficient to fit large merged functions.

This type of resource fragmentation awareness is one of the
ways in which Quilt is different from prior works that merge
functions together [29, 31, 37, 38, 40]. The other main differ-
ence is that prior works focus on merging functions written
in a single interpreted language (e.g., JavaScript) which can
be done by stitching functions at the source code level. While
interpreted languages are prevalent in serverless, compiled
languages like Rust, C, C++, Swift, Go, and others are becom-
ing popular because of their helpful type systems and good
performance. Quilt handles functions in these languages, and
can even merge across languages (e.g., Rust and Go).

In particular, Quilt achieves the following goals:
• Constraint-aware merging. Providers can tell Quilt about

their available resources and Quilt figures out how best to
stitch functions to reduce resource fragmentation.
• Transparent execution. Functions created by Quilt work

immediately on existing unmodified serverless platforms.
• Language flexibility. Developers can write functions in

many popular languages.
• No developer effort. Quilt is easy for developers to use

and is backwards compatible. Developers simply upload
functions to the platform as they do today, and then indicate
whether a function can be merged if included in a workflow.
To achieve these goals, Quilt makes three observations.

First, function-level isolation via the use of containers or VMs
makes sense when collocating functions of different tenants
in the same machine. In Quilt, we preserve this arrangement.
However, for a single workflow from a single tenant, per-
function isolation appears needlessly restrictive. Consider
how one builds a complex application: a developer imports
libraries (e.g., Boost, Tokio) and then uses functions within
these libraries. These library functions are linked and loaded
in the same address space as the rest of the application and

have access to other functions and data in the same process.
We think the same trust model should apply to serverless in
the context of the same workflow and the same tenant.

The second observation is that the LLVM project [17] is
widely supported and many languages compile to its interme-
diate representation (LLVM IR). These include C, C++, D, Go
(via Gollvm [10]), Haskell, Kotlin, Nim, OCaml, Objective-
C, Python (via Codon [12]), Rust, Scala, Swift, Zig, among
others. As a result, merging functions at the LLVM-IR level
means that, at least in theory, Quilt can work with many lan-
guages and even merge functions across languages.

The last observation is that Quilt does not need to merge
functions immediately when the developer uploads them.
Quilt can instead monitor workflows as they execute for some
time and then, in the background, decide when and what
to merge. This means that the merging does not need to be
real-time. Further, once the functions are merged, Quilt can
replace the entry point to the relevant subgraph of the work-
flow with the appropriate merged function. The scheduler is
completely oblivious to the fact that a merge took place and
just learns that a function was updated.

1.1 Overview of Quilt
Quilt provides workflow-level isolation, where functions in a
tenant’s workflow are isolated from other tenants and work-
flows, but are not isolated within a workflow. Quilt then
merges functions within a workflow into the same process.
There may be cases where a team built a function expect-
ing that it would be isolated from other functions (e.g., the
function may process sensitive data). We discuss ways to add
function-level isolation in Section 8, but in general, sensitive
functions should not be merged. Quilt is opt-in: developers
set if a function can be merged when they upload it.

Quilt merges functions by compiling them into LLVM-
IR, extracting the function’s code, giving unique names to
functions and variables to avoid aliasing, replacing invocation-
related code which uses the network (e.g., libcurl sessions)
into regular function calls, and performing a variety of opti-
mizations (e.g., dead code elimination, library deduplication,
program debloating) to reduce the size of the function. Quilt
also deals with the challenge of getting functions of differ-
ent languages to interact properly with each other. Normally,
this task would be onerous, but Quilt observes that serverless
functions interact with each other exclusively through a REST
API. That is, there is no shared memory and the only data
type are (JSON-encoded) strings. Quilt therefore only needs
to translate between the string types of the various languages.

Quilt discovers functions’ call graphs and collects perfor-
mance and resource utilization statistics with a distributed
tracing framework that requires no modifications to work-
flows or functions; Quilt can start monitoring which functions
call each other, how often, and how expensive they are as soon
as developers upload them. Once Quilt has this information,
it employs a new constraint-aware merging algorithm that

2

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

merges functions in a way that improves performance and
satisfies the provider’s resource constraints.

Finally, Quilt monitors its merged functions and reconsid-
ers the merge if there are big workload changes, a function is
updated, or its permission to be merged is removed.

We have implemented Quilt in 1.8K lines of C++ that per-
form the LLVM passes, and 1.7K lines of Bash and Python
that manage the compilation and profiling pipelines. We have
tested Quilt on three serverless platforms: Fission [9], Open-
FaaS [18], and OpenWhisk [2]. Since Quilt is transparent, we
did not have to modify these platforms’ schedulers.

We have ported three applications from the DeathStar-
Bench [27] microservice benchmark to both C++ and Rust;
each application is a workflow. We have also used Quilt
to merge functions from different languages (C, C++, Go,
Rust, and Swift). Our evaluation confirms that Quilt (with the
same number of resources) can improve median workflow
completion time by 45.63%—70.95%, and throughput by
2.05×–12.87×. Further, Quilt is also more resource efficient
as merging functions can eliminate overhead from duplicated
containers, libraries, and runtimes.

Limitations. We have tested Quilt’s ability to merge func-
tions across five languages but new languages could bring
unexpected challenges. Another limitation is that we have not
optimized the performance of our LLVM compiler passes so
merging functions takes around a minute. Section 8 discusses
how to mitigate these limitations. Furthermore, Quilt only
helps when functions call each other directly. If functions use
external services to interact with each other (e.g., Amazon’s
SQS [1]), Quilt cannot merge those external interactions.

A missing component in Quilt and prior works is a mecha-
nism to ensure graceful failure handling. If a function crashes
due to an unexpected input, some platforms return an error
message to the caller function who can then handle the failure
gracefully. When a workflow (or part of it) is a single process,
any function crash becomes a workflow crash. It remains an
open question how to best remedy this situation.

2 Background and motivation
Serverless computing is widely available today, with services
like AWS Lambda, Azure Functions, Google Functions, IBM
Cloud Functions, Oracle Cloud Functions, Cloudflare Work-
ers, and Meta’s XFaaS [36]. Further, open source platforms
such as Fission [9], OpenWhisk [2], and OpenFaaS [18] let
developers setup up their own serverless environments. As
we describe in the introduction, the promise of serverless is
that functions can be run anywhere suitable, and develop-
ers are freed from dealing with the time-consuming tasks of
balancing load, autoscaling, machine management, etc.

In this section we discuss serverless workflows, how func-
tions call each other, and the limitations of existing platforms.
We then review prior works and how Quilt differs from them.

Serverless workflows. Workflows are a way in which devel-
opers can express larger applications by allowing functions to
call each other. In this case, a function A can call functions B
and C, wait for B and C to finish, and then use their outputs.
These function calls can be synchronous (call B and wait for
it to return before calling C) or asynchronous (call both B
and C in parallel). Workflows can be explicitly defined using
specification languages such as AWS Step Functions [4], or
functions can simply call each other using an invocation API.
In this latter case, workflows are not known a priori to the
serverless platforms; instead, they are implicitly defined by
the function invocations and may vary across executions (e.g.,
function A may invoke function B inside a branch, so A may
only call B on some inputs).

How do functions call each other? There are two principals:
the caller and the callee. In the caller function’s code, devel-
opers use the invocation API to specify the callee’s handle
(i.e., unique identifier) and the desired input. Then, as shown
in Figure 1, the invocation information is first serialized into
either JSON or a flat string, packed into the payload of the
function invocation request, and sent to the API gateway via
HTTP. The API gateway verifies that the request is valid
and then forwards it to a controller or scheduler that decides
which worker should be responsible for the request. Finally,
the invocation request is sent to the selected worker.

If the callee’s container is not present in the main mem-
ory of the worker, the worker has to load the corresponding
function container, which includes the runtime, libraries, and
function code, into the main memory from remote storage.
This loading time is referred to as a “function cold start”.

Once the container is ready, the worker spawns a new pro-
cess that runs the callee’s code in the container and forwards
the function invocation request to the callee. Then, the callee
function processes the request by first deserializing the pay-
load to understand the caller’s inputs and then executing the
function code to generate the corresponding response. Sim-
ilarly, sending the response back involves the same steps as
receiving the request. The response must be serialized and
sent to the caller via the API gateway.

Sources of overhead. Function invocations incur overheads
due to: (1) serialization and deserialization; (2) networking
delay; (3) queueing delay; and (4) function cold starts.

If a function cold start is not present, the invocation over-
head typically ranges from a few milliseconds to tens of mil-
liseconds [3, 32], which can be relatively high compared to
the actual function execution time. For example, the median
invocation latency of a warm no-op function on AWS Lambda
is 10.4 ms [29], while 20% of AWS Lambda functions run in
under 100ms [8], and 67% of Lambda@Edge functions run
in under 20ms [7]. In addition, statistics from Meta’s XFaaS
platform indicate that “short-lived” functions tend to gener-
ate significantly more function invocations [36]. As a result,

3

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

when workflows consist of these short-lived functions, the fre-
quent function invocations may lead to significant overhead.
Cold starts are an order of magnitude worse [39].

2.1 How do prior works address invocation overheads?
Prior works have observed that invocation costs in workflows
are problematic. Their proposal is to place functions near
each other. Quilt has a similar objective but it has different
requirements (§1) and proposes different mechanisms.

Worker or VM-based co-location. Nightcore [29] places re-
lated functions in the same worker but in different containers,
and then uses OS pipes to support the communication. This
approach replaces existing platforms instead of working with
them, and requires all functions in a workflow to be in the
same machine (which can lead to resource fragmentation), or
requires developers to specify which functions to co-locate
(which requires manual effort). This information is needed
because the functions need to explicitly use the OS pipe API.

Like Nightcore, SONIC [33] co-locates functions in the
same VM (different containers), but its focus is reducing data
movement by using the VM’s local storage. Quilt is inspired
by SONIC, but merges functions in the same process.

Merging. Quilt is inspired by works that merge functions
into the same container or process, including WiseFuse [34],
Faastlane [31], Faasm [40], and Fusionize [37, 38]. Quilt has
three salient aspects that make it unique.

1. Transparency. There is no need for developers to write spe-
cific code, which is in contrast to Faasm (though merging
is not Faasm’s primary goal but rather a nice byproduct).

2. Language flexibility. Functions can be written in different
languages, including compiled languages; WiseFuse, Fu-
sionize, and Faastlane require all functions to be written in
the same interpreted language (e.g., Python).

3. Constraint-aware merging. Merging takes into account
functions’ resource needs and the provider’s constraints.
Fusionize ignores constraints when merging functions,
while Wisefuse and Faastlane take container sizes into ac-
count. Quilt expands on this by incorporating fine-grained
profiling data like inter-function call frequency.

Roadmap. Section 1.1 briefly outlines Quilt’s approach. The
next sections provide the details.

3 Profiling
The first step in Quilt is to infer workflows and their resource
requirements. In particular, Quilt needs to gather two things:

• Call graph: which functions call which other functions, and
how often. The vertices in the graph represent functions
and the directed edges represent invocations. The weight
of the edges represents the frequency of the invocation.

nginxOpenTelemetry module

nginx

API gateway

function

appOpenTelemetry

otel-collector

ingress-nginx

Grafana

Tempo

client request

otlp-gRPC

otlp-gRPC

1

2

profile data

function
invocation

Figure 2. Quilt uses lightweight and transparent distributed
tracing to collect caller-callee information.

• Resource use: how many resources does each function
need. This labels each vertex in the call graph with the
corresponding number of CPU and memory that it needs.
One can also collect network bandwidth and storage IOPS.

To construct the call graph without many changes to the
serverless platform or requiring developer involvement, Quilt
adopts a transparent and lightweight distributed tracing ap-
proach. In detail, Quilt places an nginx ingress controller
before the API gateway as shown in Figure 2. We configure
ingress rules to ensure that HTTP requests retain the same
path and query string after passing through the ingress con-
troller. This allows the API gateway, which relies on this
data to identify functions and request parameters, to continue
working. We enable the OpenTelemetry [19] module in nginx
to record and report traces that contain the caller-callee in-
formation. We also deploy an OpenTelemetry Collector (otel-
collector) for trace collecting and processing, and Grafana
Tempo [11] as a backend for storage and future analysis.

Whenever a function invocation is made from a caller func-
tion, it follows path ➋ in Figure 2 to send the invocation
request to nginx rather than the original path ➊. Upon receiv-
ing the request, nginx’s OpenTelemetry logs the request and
then forwards it to the API gateway. The recorded traces are
batched and periodically sent to the otel-collector for inter-
mediate filtering and processing, and are finally exported to
Tempo. Quilt can then query Tempo to retrieve all necessary
caller-callee information whenever it needs it.

Note that Quilt does not profile functions all the time, as
this would introduce the overhead of going through the extra
hop of nginx permanently. Instead, it is done dynamically
by the provider. To support this on/off switch for profiling,
we observe that all three platforms that we study (Open-
Whisk [2], OpenFaaS [18], and Fission [9]) are based on
Kubernetes, so Quilt introduces a one-bit Kubernetes token,

4

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

unique-id-service

upload-unique-id

compose-review

text-service

upload-text

upload-user-
with-username

upload-user-id

compose-review
-upload-movie-id

rating-service
upload-movie-id

upload-rating

compose-
and-upload

request

store-review

upload-
movie-review

upload-
user-review

204 197
203

208

185

196

194204
204

197

201
195

193

207

5 2

0.403CPU

0.305CPU

0.269CPU

0.265CPU

0.259CPU
0.356CPU

0.322CPU

0.381CPU

0.311CPU0.306CPU

0.306CPU
0.305CPU

0.242CPU

0.217CPU

0.238CPU

202

Figure 3. Example call graph for a Movie Review service
generated by Quilt’s distributed tracing (Figure 2).

profiler-enabled, to specify whether the function in-
vocation should be profiled. When a function invocation is
made, it first checks the profiler-enabled parameter
stored in the container. If profiling is enabled, the request fol-
lows path ➋ in Figure 2; otherwise, it follows path ➊. When
the token is changed, all containers that store this parameter
automatically receive the update and change their behavior.

Collecting resource usage. Quilt collects the cumulative
CPU time and the peak memory usage of each container
within a profiling window with cAdvisor [5], and stores the
results in InfluxDB [14]. Quilt then queries InfluxDB to get
the necessary statistics. Since the serverless platform creates
multiple containers for the same function (but different in-
stances), Quilt aggregates the data of the relevant containers.
From this information Quilt can derive the average CPU and
max memory used by each function.

Call graph construction. Quilt fetches the data stored in
Tempo and counts the number of requests to the workflow
and the occurrences of each caller-callee pair in the profile
window. It then uses this information to build the edges of
the call graph. We show an example call graph generated by
profiling DeathStarBench’s Media Microservice in Figure 3.
In the call graph, we use dash arrows to represent function
calls from upload-unique-id and upload-text to
compose-and-upload because these two calls appear in
the code but are not present in the profiling samples (i.e., pro-
filing is not perfect as some code paths are data-dependent).

4 Deciding what to merge
Serverless platforms impose resource limits on each function
instance, such as a maximum CPU and memory. If an instance
exceeds its CPU limit, the function is throttled. If a function
exceeds its memory limit, it is terminated. Further, some
platforms place relationships between CPU and memory [15].

Therefore, given a call graph, Quilt must carefully decide
which functions to merge to balance the performance benefits

of merging, with the resource constraints of the platform. Ag-
gressively merging too many functions can lead to overuse
of resources, causing function slowdowns or failures. Con-
versely, merging too few functions limits the benefits.

Are container limits reasonable? One might wonder whether
the provider could simply merge the entire workflow into a
single function and increase the resource limits? Yes, but at
the cost of resource fragmentation. If a provider has many
containers with heterogenous demands (memory, CPU), plac-
ing them in worker machines without leaving many resources
stranded is a hard bin-packing problem. Worse yet, as the re-
source demands get large in relation to the available resources,
the waste increases: in the extreme case, each worker can only
run one container and any leftover resources are wasted. We
design Quilt to provide most of the benefits of merging while
satisfying the restrictions of existing platforms.

4.1 Problem statement
Deciding which functions to merge while respecting resource
constraints is a graph clustering problem. The objective is to
cluster the call graph into (potentially overlapping) groups
that satisfy the resource constraints while minimizing inter-
group edges. Specifically, the call graph is modeled as a
connected rooted Directed Acyclic Graph (rDAG)𝐺 = (𝑉 , 𝐸),
where all nodes are reachable from a single root node via a
directed path. Each node 𝑖 ∈ 𝑉 represents a function and is
labeled by two parameters obtained from profiling: the peak
memory usage𝑚𝑖 , and the average CPU usage 𝑐𝑖 .

A directed edge (𝑖, 𝑗) ∈ 𝐸 from node 𝑖 to node 𝑗 denotes a
caller-callee relationship and is assigned a weight𝑤𝑖, 𝑗 derived
from the call frequency profiling. For each edge, we define
the normalized per-workflow edge weight to be 𝛼𝑖, 𝑗 = ⌈

𝑤𝑖,𝑗

𝑁
⌉,

where 𝑁 is the number of times the workflow was invoked
during the profile window. This 𝛼𝑖, 𝑗 is an upper bound on
the expected number of times that function 𝑖 calls function 𝑗

when the workflow is invoked.
We will use 𝛼𝑖, 𝑗 to help us scale the amount of resources

that function 𝑗 would consume if it were to be placed in the
same group as function 𝑖. For example, if function 𝑖 calls
function 𝑗 asynchronously 𝛼𝑖, 𝑗 times (so all instances of 𝑗 run
in parallel), then the 𝛼𝑖, 𝑗 instances of 𝑗 would require 𝛼𝑖, 𝑗 ·𝑚 𝑗

units of memory and 𝛼𝑖, 𝑗 · 𝑐 𝑗 units of CPU. On the other hand,
if 𝑖 calls 𝑗 synchronously 𝛼𝑖, 𝑗 times (so each instance of 𝑗 runs
after the previous instance completes), then function 𝑗 would
consume𝑚 𝑗 memory and 𝛼𝑖, 𝑗 ·𝑐 𝑗 CPU. This asymmetry stems
from the fact that 𝑗 can free memory after it completes so
other instances (or other functions in the same group) can use
it, but 𝑗 cannot “free” the CPU time that it has already used.

Let 𝐶 be the maximum amount of CPU time and 𝑀 be
the maximum amount of memory allocated to a container.
The goal is to obtain 𝑘 subgraphs 𝐺1,𝐺2, . . . ,𝐺𝑘 ⊆ 𝐺 each
representing a group of functions that will be merged into
a single process. Note that we say nothing about subgraphs

5

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

being disjoint. If a workflow includes a function that is called
multiple times by other functions (e.g., compose-and-upload
in Figure 3), it is sometimes beneficial to include the function
in many subgraphs. The constraints on the subgraphs are:

• The union of the 𝑘 subgraphs recovers the call graph:

𝐺1 ∪𝐺2 ∪ · · · ∪𝐺𝑘 = 𝐺.

• Each subgraph 𝐺𝑢 = (𝑉𝑢, 𝐸𝑢) must be a connected rDAG.
This constraint ensures that all functions within 𝐺𝑢 can
be merged into a program with a single entry point that
is transparent to the scheduler. An implication of this con-
straint is that if an edge (𝑖, 𝑗) crosses from subgraph 𝐺𝑢 to
a different subgraph 𝐺𝑣 (i.e., 𝑖 ∈ 𝑉𝑢, 𝑗 ∈ 𝑉𝑣, 𝑢 ≠ 𝑣), then
node 𝑗 must be the root of 𝐺𝑣 .

• Each subgraph𝐺𝑢 = (𝑉𝑢, 𝐸𝑢) with root 𝑢 satisfies the mem-
ory and CPU resource constraints:

𝑐𝑢 +
∑︁
(𝑖, 𝑗) ∈𝐸𝑢

𝛼𝑖, 𝑗 · 𝑐 𝑗 ≤ 𝐶

𝑚𝑢 +
∑︁
(𝑖, 𝑗) ∈𝐸𝑢

𝑚 𝑗 +
∑︁

(𝑖, 𝑗) ∈𝐸𝑢,async

(𝛼𝑖, 𝑗 − 1) ·𝑚 𝑗 ≤ 𝑀

Some explanation for the above formulas. The CPU con-
straint says: every incoming edge to 𝑗 from within𝐺𝑢 , namely
(𝑖, 𝑗) ∈ 𝐸𝑢 , that is taken 𝛼𝑖, 𝑗 times, causes function 𝑗 to run,
with an overall consumption of 𝛼 · 𝑐 𝑗 units of CPU. The ex-
ception is the root of 𝐺𝑢 because every call to 𝑢 creates a new
instance of the graph (i.e., spawns a new “merged function”
or container). Further, edges from nodes in other subgraphs
to 𝑗 ∈ 𝑉𝑢 do not exist unless 𝑗 is the root of 𝐺𝑢 due to the
connected rDAG restriction. Note that the function 𝑗 can be
cloned and appear in many subgraphs (this is why our prob-
lem is not a standard partitioning problem), but the CPU
constraint is only talking about the instance of 𝑗 ∈ 𝑉𝑢 .

The memory constraint is more involved because we can
assume that functions free memory when they finish, but we
need to be careful. We first label edges 𝐸𝑢 = 𝐸𝑢,sync ∪ 𝐸𝑢,async
by the type of call (synchronous or asynchronous). The first
sum accounts for potential concurrency across edges, even if
the edges are synchronous. For example, consider a diamond-
shaped DAG with edges (𝐴, 𝐵), (𝐴,𝐶), (𝐵, 𝐷), (𝐶, 𝐷). Even if
(𝐵, 𝐷) and (𝐶, 𝐷) are synchronous, (𝐴, 𝐵) and (𝐴,𝐶) might
be asynchronous, allowing (𝐵, 𝐷) and (𝐶, 𝐷) to be concurrent.
The second sum accounts for concurrency within each edge.

Objective function: The goal is to find the set of subgraphs
that minimizes the number of function calls that require re-
mote invocations (i.e., the sum of cross-graph edges). For-
mally, for subgraphs 𝐺𝑢 and 𝐺𝑣 define 𝐸𝑢,𝑣 to be the set of
edges that have one endpoint in 𝐺𝑢 and the other in 𝐺𝑣 . The

objective function is:

minimize
∑︁

𝑢,𝑣∈[1,𝑘]
𝑢≠𝑣

©­«
∑︁

(𝑖, 𝑗) ∈𝐸𝑢,𝑣

𝑤𝑖, 𝑗
ª®¬

Workflows with high fan-out. One consequence of these con-
straints is that our merging algorithm is unlikely to merge
functions with very high fan-out (e.g., a function that calls
another function 1000s of times), as doing so would incur a
very high resource cost. This ensures that workflows in Quilt
can retain the elasticity and burstiness provided by serverless
platforms that systems like gg [24] or ExCamera [25] exploit
to complete tasks quickly with massive parallelism.

Section 5.6 discusses what happens when the fan-out is
data dependent and therefore the profiled edge values are not
representative of future invocations.

4.2 Finding the optimal set of subgraphs
We could not find prior work that solves a non-disjoint graph
clustering problem where the constraints are over vertices and
the optimization is over the edges. In the context of serverless,
the closest is Costless [22], which helps developers decide
which functions to run at the edge (e.g., in a Raspberry Pi) and
which to run in the cloud to minimize financial costs. Cost-
less deals with disjoint partitions and only 2 groups (cloud or
edge). Quilt’s problem is more complex as it needs to deter-
mine how many groups to create and which functions to put
in each group to reduce costs and satisfy all constraints.

Below we show how to find the optimal solution to this
problem for small call graphs (≤20 vertices)—which includes
all of the benchmark applications that we could find. Given
that this problem is NP hard, we also describe how to compute
a suboptimal (but empirically good) solution for large graphs.

Optimial solution. To motivate our solution, we make three
observations. First, each of the 𝑘 subgraphs must be an rDAG,
so each subgraph has one root. Second, the 𝑘 roots must be
unique, as otherwise if there are multiple subgraphs with the
same root, it is not clear which subgraph (merged function)
the scheduler should run when the root’s handle is used. Third,
there are cases where having more subgraphs is beneficial, so
picking the smallest 𝑘 for which there is a valid grouping does
not guarantee the lowest sum of all weights. Appendix A has
an example of this. As a result, one needs to try all possible 𝑘 .

Our algorithm therefore has two phases.

Phase 1: Find candidate root sets for a given 𝑘 . Given a value
of 𝑘, output a list of candidate root sets R = {𝑅1, . . . , 𝑅ℓ }.
Each set 𝑅𝑖 = {𝑟1, 𝑟2, . . . , 𝑟𝑘 } ∈ 𝑉 𝑘 consists of the chosen
roots for the 𝑘 subgraphs. It includes the original root in 𝐺 , in
addition to 𝑘 − 1 other roots. Consequently, there are a total
of 1 +

(|𝑉 |−1
𝑘−1

)
possible candidate root sets.

Phase 2: Subgraph Construction for a given 𝑅. Given a single
candidate root set 𝑅, we determine the exact assignment of all

6

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

graph nodes to the 𝑘 potential subgraphs (𝐺1, . . . ,𝐺𝑘) such
that all constraints are satisfied and the sum of cross-graph
weights is minimized. We formulate this assignment problem
as the following Integer Linear Program (ILP):
Decision Variables: We create the following binary variables:
• 𝑥𝑖, 𝑗 : for each edge (𝑖, 𝑗) ∈ 𝐸. We set 𝑥𝑖, 𝑗 = 1 if the edge
(𝑖, 𝑗) is a cross-edge (i.e., it s a cut), and 𝑥𝑖, 𝑗 = 0 if it is
internal to a subgraph.
• 𝑦𝑖,𝑟 : for each node 𝑖 and each root 𝑟 ∈ 𝑅. We set 𝑦𝑖,𝑟 = 1

to mean “assign 𝑖 to subgraph 𝐺𝑟”; 𝑦𝑖,𝑟 = 0 otherwise.
Note that 𝑖 can be assigned to multiple subgraphs.

Objective Function:

Minimize
∑︁
(𝑖, 𝑗) ∈𝐸

𝑤𝑖, 𝑗 · 𝑥𝑖, 𝑗

The objective is to minimize the sum of cross-edge weights,
which corresponds to the number of non-local serverless calls.
Constraints: We have 8 sets of constraints that must be si-
multaneously satisfied. We give 3 examples here and list all
in Appendix B. (1) Every root belongs to its own subgraph:
∀𝑟 ∈ 𝑅, 𝑦𝑟,𝑟 = 1. (2) Every node 𝑖 ∈ 𝑉 must be assigned to at
least one subgraph: ∀𝑖 ∈ 𝑉 ∑

𝑟 ∈𝑅 𝑦𝑖,𝑟 ≥ 1. (3) If (𝑖, 𝑗) ∈ 𝐸 is
a cross edge (i.e., 𝑦𝑖,𝑟 = 1 and 𝑦 𝑗,𝑟 = 0) then 𝑥𝑖, 𝑗 = 1. This is
captured by: ∀𝑟 ∈ 𝑅,∀(𝑖, 𝑗) ∈ 𝐸, 𝑥𝑖, 𝑗 ≥ 𝑦𝑖,𝑟 − 𝑦 𝑗,𝑟 .

Full algorithm. We start at 𝑘 = 1 and use Phase 1 to compute
the list of candidate root sets R. For each 𝑅𝑖 ∈ R, we use
Phase 2 to find the best subgraph assignment for 𝑅𝑖 . Once we
have tried all candidate sets in R, we increment 𝑘 and repeat.
We do this until 𝑘 = |𝑉 | and output the best assignment seen.

4.3 A fast and good (but suboptimal) solution
The above approach is slow in three ways: (1) it tries every
value of 𝑘; (2) it outputs a list of root sets R that is exponential
in 𝑘; and (3) it solves an ILP for each 𝑅 ∈ R. We relax these.

First, instead of trying every value of 𝑘 we keep increasing
𝑘 until we find good enough groupings. Second, we avoid
trying every possible candidate set 𝑅. Instead, we study the
graph structure and identify nodes that could serve as promis-
ing roots. Some promising candidates are nodes with high
out-degree, in-degree, or high betweenness centrality. The
intuition is that if these nodes are roots, we can internalize
many cross-graph edges. Unfortunately, we find empirically
that these heuristics produce low quality solutions. The core
issue is that they look at properties of a single node without
understanding downstream effects.

We thus propose the Downstream Impact heuristic (DIH).
Informally, DIH measures the resource demands of the por-
tion of the graph reachable from node 𝑖. If 𝑖 is the gateway to a
large, resource-intensive subgraph, forcing this subgraph into
another (if 𝑖 is not made a root) might violate the memory or
CPU constraints. Making 𝑖 a root allows this resource-heavy
part to form its own subgraph and relieve capacity elsewhere.

sync_inv(callee: &str, req: String) -> String;
async_inv(callee: &str, req: String) -> Future;

async_wait(future: &Future) -> String;
get_req() -> String;
send_res(response: String);

Figure 4. Typical serverless function I/O and invocation API.

We formalize DIH in Appendix C and find empirically in
Section 7.5.2 that it works very well: it is fast and identifies
high quality roots that are often optimal.

Last, we relax the ILP formulation by allowing the solver to
return a solution for a given candidate set 𝑅 that is within some
percentage of optimal. For example, in Gurobi [16] setting
the “MIP Gap” parameter causes the solver to stop when it
finds a feasible solution whose objective value is guaranteed
to be within the chosen percentage of the optimum.

5 Merging
Given a set of groups as described in the prior section, Quilt’s
goal is to merge each group. This requires integrating the
callee function into the caller’s address space, and transform-
ing invocations into local calls. Quilt observes that serverless
platforms have APIs that functions use to perform I/O and call
other functions. We give a Rust API in Figure 4; the specifics
vary by platform and language, but the general idea applies.

The sync_inv and async_inv APIs are used to call
other functions (async_inv spawns a thread and then calls
sync_inv). The caller specifies the handle of the callee
to be invoked and the payload. Inside sync_inv, an HTTP
client library (e.g., reqwest, libcurl) is used to establish
an HTTP connection with the API gateway. Note that this API
is heavily simplified; in reality the types are more complex to
deal with timeouts, errors, etc.

The get_req() and send_res() interfaces are used
by functions to receive inputs from STDIN and return outputs
via STDOUT. The serverless platform’s container takes care
of providing the actual inputs to the function and routing the
outputs over the network.

Quilt leverages these existing APIs to merge functions.
The key point that makes merging manageable even as we
go across different programming languages is that in all
serverless platforms we have surveyed the input and outputs
to a serverless function are always a single string (usually
JSON encoded). Quilt exploits this fact to build a compilation
pipeline that merges functions.

5.1 Compilation pipeline
As shown in Figure 5, Quilt’s pipeline relies heavily on the
LLVM infrastructure. Because serverless functions may be
written in various programming languages, merging them into
the same address space requires an intermediate representa-
tion to which different languages can be uniformly converted.

7

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

source
code

source
code

caller

callee

LLVM
IR

compiler

LLVM
IR

LLVM
IR

rename
pass

LLVM
IR

rename
pass

llvm-link LLVM
IR

LLVM
IR

merge
pass

.obj
File

llc

librustc
_driver.so

other
shared
libraries

binarylld
merged

1 2

3 4
7

10

LLVM
IR

source
code

LLVM
IR

dependency

LLVM
IR

llvm-link
delay
HTTP
pass

5

6 8

.obj
File

Implib.so
9

frontend

compiler
frontend

compiler
frontend

 (when merging more than 2 functions)
input for the next round of merging

Figure 5. Compilation pipeline for merging serverless functions based on LLVM.

LLVM’s language-agnostic intermediate representation, de-
signed as a portable, high-level assembly language, serves
as the ideal intermediate layer for this purpose. Our imple-
mentation demonstrates cross-language merging of functions
written in Rust, C, C++, Swift, and Go. However, we believe
our approach can be applied to functions written in other
languages that support translation to LLVM IR.

Below we describe how Quilt merges 2 functions in the
same language, then two functions in different languages, and
finally how it merges many functions from a call graph.

5.2 Merging functions in the same language
We give an example of how Quilt merges two Rust func-
tions. While the idea of merging functions is conceptually
straightforward, the mechanics take considerable care.

Quilt’s compilation pipeline operates as follows. First, the
source code for the two serverless functions is compiled into
LLVM IR using the rustc compiler. We leverage cargo to
fetch and compile dependencies; if multiple functions use the
same dependencies we only compile them once. We choose
rustc+nightly because it enables compiling core Rust
libraries such as libstd into bitcode, which is a binary
encoding of LLVM IR that allows us to perform further cus-
tomization and optimization. If these libraries are not com-
piled to bitcode, the linker must instead link them from Rust’s
official toolchain during the linking stage. Given that these
libraries often exceed 100 MB in size, linking them directly to
the function binaries causes these binaries to be much larger.
Such size difference results in several milliseconds of over-
head during a cold start where the worker needs to retrieve
the binary from remote storage.

Then, in step ➋, we perform the RenameFunc pass to re-
name functions in the callee that may have the same signature
as those in the caller, since functions with identical signatures
cannot reside in the same address space. In step ➌, the LLVM
bitcode linker, llvm-link, combines the caller and callee
bitcode into a single LLVM bitcode file.

In step ➍, our MergeFunc pass facilitates converting
serverless functions to local functions. The MergeFunc pass
checks all sync_inv() calls in the caller function to iden-
tify those with a first argument matching the callee’s name,

and then converts them into local calls. For instance, suppose
the caller’s code contains:

let req = serde_json::to_string(&arg).unwrap();

let res = sync_inv("text-service", req);

The second line will be converted to:

let res = text_service(req);

The MergeFunc pass is also responsible for fixing up the
callee function to match the type signature of a local call and
to deal with its input and outputs as if it were a local function.
For example, the following serverless function:

fn text_service() {

let request = get_req();

// compute response payload

let res = serde_json::to_string(&payload);

send_res(res);

}

is converted to this local function:

fn text_service(req: String) -> String {

let request = req;

// compute response payload

let res = serde_json::to_string(&payload);

res

}

After merging, Quilt reruns llvm-link in step ➏ to add
various Rust crates to the program’s bitcode. Then, Quilt exe-
cutes the DelayHTTP pass, which delays the initialization of
the libraries used by sync_inv to perform HTTP requests.
For example, Quilt relocates the curl_global_init()
call, which Rust serverless functions call before main to
the sync_inv call itself (with appropriate guards). We do
this so that later (in step ➒) we can defer the loading of the
libcurl shared library until it is actually needed. The ratio-
nale behind this optimization is that libcurl usually loads
about 40 additional shared libraries, and all of this loading
takes several milliseconds. In the merged code, most func-
tion invocations are converted into local calls that do not
use HTTP at all. By deferring the initialization of curl, the
merged function avoids library loading overhead unless an
actual non-local function invocation occurs.

In step ➑, llc compiles the final LLVM bitcode down to
a target-specific assembly code. Quilt’s compilation pipeline

8

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

then leverages Implib.so [13] in step ➒ to wrap infre-
quently used shared libraries. Typically, all shared libraries are
loaded before a program’s execution, regardless of whether
they are needed. By generating wrappers, Implib.so en-
sures that the wrapped libraries are not loaded until the first
call to one of their functions, minimizing the cost of loading
unnecessary libraries. Finally, in step ➓, the linker combines
all shared libraries and object files into a binary, applying
optimization flags such as -Wl,-gc-sections to strip
out unused functions and variables.

In short, merging function with Quilt ensures that our func-
tions do not negatively impact each other when they are in
the same process. Quilt handles all naming and conflict res-
olution, and also ensures that large libraries like libcurl
that are no longer needed are not included unless necessary.

5.3 Merging functions in different languages
There are two main challenges in merging functions across
languages. First, ensuring that they are in the same intermedi-
ate representation (IR) that can then be lowered to produce a
static binary. Second, dealing with varying argument and re-
turn types. For example, the sync_inv() interface in Rust
uses std::string::String as its argument and return
type, while the C/C++ interface uses char*.

Quilt relies on LLVM to address the first challenge. This
means that Quilt is limited to languages that compile to LLVM
IR. Fortunately, this is a large set that includes C, C++, Ob-
jective C, D, Kotlin, Rust, Scala, Swift, Go (via gollvm),
among others. Further, some dynamically typed languages
like Python have ahead-of-time compilers like Codon [12]
that produce LLVM IR that could work with Quilt.

To address the second challenge we need a way to make
the types across languages compatible. Automatically finding
ways to convert between every possible pair of types (in-
cluding custom structs) across every pair of languages is
onerous. However, serverless functions use (JSON encoded)
strings as argument and return types, since functions imple-
ment a REST API and are triggered by HTTP requests. Our
solution therefore only needs to handle a translation between
string types. Further, most languages already implement a
foreign interface that contains the C string type (char *)
in order to interact with the OS during system calls. Conse-
quently, Quilt implements simple shims that convert to and
from the various string types and C’s char *.

Appendix D gives the detailed changes to the LLVM pipeline
that are required to make the above work, and also gives ex-
amples of the shims that Quilt uses for Rust and Swift. At a
high level, the shims are carefully created and injected during
the linking and the merge passes in steps ➌ and ➍.

Memory management. A concern we had when merging
functions across five languages (C, C++, Go, Swift, Rust)
was whether the different memory allocators and runtimes
would conflict. We find this not to be the case. C, C++, and

Rust’s default allocators are the same (provided by glibc);
they happily share the same heap without issue. Custom al-
locators for C, C++, and Rust (e.g., jemalloc), as well as
the default allocators of Swift and Go get their memory re-
gions/arenas through mmap. The OS already guarantees that
allocated memory regions for different memory allocators
do not overlap, and each allocator manages its own region
without interference (e.g., Go’s garbage collector does not
interact with the regions of other allocators).

5.4 Merging multiple functions
In Section 4, Quilt creates 𝑘 subgraphs, where each subgraph
represents functions that should be merged. The subgraphs are
independent so merging is done in parallel. Within a subgraph,
Quilt operates in rounds, merging two functions at a time.

Quilt starts with the root and then merges additional nodes
in BFS traversal order. For example, in the first round the
root and one of its children are the inputs to the compilation
pipeline. A caveat is that after the MergeFunc pass trans-
forms the function invocation to a local call in step ➍, the
compilation pipeline does not proceed to the final binary gen-
eration steps. Instead, it stops the current round and reuses the
LLVM IR produced in step ➍ for the next round, as indicated
by the red arrow in Figure 5 that goes from step ➍ to step ➋.

Since functions are merged following BFS traversal order,
subsequent merge rounds have the guarantee that the caller of
a function already resides in the address space of the merged
function, or is in a separate subgraph and will not be merged.
Thus, only the callee is fed into the compilation pipeline.

Sometimes the callee may already be in the address space
of the merged function. For example, in Figure 3, after merg-
ing upload-user-id and compose-and-upload, the
code of compose-and-upload is already present. So
later on when Quilt goes to merge upload-rating and
compose-and-upload, there is no need to reintroduce
compose-and-upload. Quilt can start from step ➍.

5.5 Updating functions
When the container for a merged function is ready, Quilt sends
a request to the API gateway to notify it to update the function
container. This uses exactly the same mechanism as when a
developer uploads an updated version of their function in the
existing platforms. While the merged function’s container is
being deployed, the platform continues to run the previous
(unmerged) functions. Once the new container is deployed,
the runtime seamlessly switches to serve requests with the
merged function. Such smooth transition is possible because
Quilt is transparent to the serverless platform.

5.6 Unrepresentative profiling
If the profiling of a workflow is not representative of future
invocations this can lead to (1) subpar merges or (2) resource
limit violations. Outcome (1) is not problematic: the merged
workflow derives less (but still some) benefit versus a world

9

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

in which workloads followed the profile. Outcome (2) is
problematic: there are more calls to certain functions than
Quilt expects, or functions use more resources than profiled—
either way the process may consume more resources than
provisioned which would cause throttling or a crash. As an
example, consider a function with data-dependent fan-out:

fn fan_out_function(num: i32) {

for i in 0..num {

let req = // generate request for callee

let res = async_inv("text-service", req);

}

}

Suppose that during profiling, clients send requests fol-
lowing a distribution where 90% of requests use num = 5
and 10% use num = 13. The expected number of calls to
text_service() would be 5.8, so Quilt would use 𝛼 = 6
for the respective edge in the call graph. When Quilt merges
both functions based on this information, any requests that
supply num > 6 could cause issues.

Quilt handles subpar profiling of call frequencies by mak-
ing sync_inv and async_inv conditional (recall that
async_inv spawns a thread and calls sync_inv):

let req = serde_json::to_string(&arg).unwrap();

let res = if callee_fn_num <= profiled_edge {

callee_fn_num += 1;

text_service(req) // local call

} else {

sync_inv("text-service", req) // RPC

};

In other words, if a request triggers the profiled number of
invocations or fewer, all calls are local. Otherwise, Quilt is-
sues the remaining calls remotely, preserving the correctness,
scalability, and elasticity of the status quo. We discuss subpar
CPU and memory profiling in Section 8.

6 Implementation
We extend LLVM 19.1.0 with over 1.8K lines of C++ for the
compiler passes introduced by Quilt. We also write 1.7K lines
of Python and Bash to orchestrate the compilation pipeline,
and interact with the other components to collect statistics,
merge functions, and update containers in the serverless plat-
form. The merging decision algorithm uses Gurobi 12.0.1 [16]
as the ILP solver. We use Nginx Ingress Controller 1.10.1,
OpenTelemetry Collector 0.121.0, Tempo-Distributed 1.23.0,
Grafana 8.10.4, cAdvisor 0.35.1, and InfluxDB 1.8.10. The
serverless functions sometimes need state; we use KeyDB
6.3.4 and Memcached 1.6.37.

We have tested Quilt with 3 serverless platforms: Fission
1.20.5 [9], OpenFaaS 0.27.10 [18], and OpenWhisk 1.0.1 [2].
The only required change was the introduction of the Kuber-
netes token described in Section 3, which is independent of
the platform. We use Kubernetes K3s 1.30.6+k3s1.

Our code is available at: https://github.com/eniac/quilt.

7 Evaluation
We aim to answer four key questions in this evaluation:
1. Does merging functions within a workflow improve per-

formance and resource usage for actual applications?
2. Do we need to merge functions in the same process, or can

we simply colocate functions in the same container?
3. Can we merge everything into a single function?
4. Is profiling, deciding what to merge, and actually merging

functions efficient enough that it makes sense to do it?
5. What happens if the call frequency profiling is wrong?

7.1 Evaluation environment
Our cluster consists of 6 machines. 3 machines (128-core Intel
Xeon Platinum 8253 with 2 TB RAM) run all the serverless
functions; one machine (20-core Intel Xeon E5-2680 with
500 GB RAM) runs the API Gateway, serverless runtime,
cAdvisor, and the trace collector; one machine (8-core Intel
Xeon Gold 6334 with 64 GB RAM) runs Tempo, InfluxDB,
KeyDB, and memcached; and one machine (8-core AMD
EPYC 72F3 with 64 GB RAM) runs the workload generator.
All machines run Ubuntu 24.04.2 LTS (Linux 6.8.0) and are
connected to a 1 Gbps network with ≈200 𝜇s RTTs.

Serverless platform and function language. Quilt works
with multiple platforms and languages (§6). To reduce the
number of experimental variables, we focus on a specific plat-
form and language. While the numbers change as we move
across platforms and languages, the conclusions are similar.
We focus on Fission as the serverless platform, and Rust as
the language for all functions. We chose Fission because the
free version of OpenFaaS is limited to 15 functions [18], and
OpenWhisk’s performance (independent of Quilt) is worse
than Fission’s. The choice of Rust was arbitrary.

7.2 Evaluated systems and workloads
To put Quilt in context we consider two baselines.

• Baseline. Status quo with each function in its container.

• Container merge (CM). All functions are placed in the
same container. Inspired by WiseFuse [34], which creates
a Python function that calls other Python functions, we
extend this idea to compiled languages. We deploy an “in-
ternal API gateway” inside the container that intercepts the
HTTP requests coming from function invocations and then
spawns the callee process and passes the request to it.

Applications and workloads. We use DeathStarBench [27],
which is a benchmark suite studied by many prior serverless
projects [21, 28–30, 35, 42–44]. These applications include
a social network (SN), a hotel reservation system (HR), and
a movie review service (MR). We show a workflows of MR in
Figure 3. The remaining workflows and the other applications
are given in Appendix F. For workload generation we use
wrk2 [6], which is a closed-loop HTTP workload generator.

10

https://github.com/eniac/quilt

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

SN:compose-
post (10)

SN:follow-with
-uname (4)

SN:read-home
-timeline (2)

MR:compose-
review (15)

MR:page
-service(6)

MR:read-usr
-review (2)

HR:resv-
handler (3)

0

100

200

300

400

500

600
La

te
nc

y
(m

s)
baseline sync
quilt sync
baseline async
quilt async

HR:search
-handler (6)

HR:nearby
-cinema (2)

0

1000

2000

3000

4000

5000

Figure 6. Median and 99-percentile (error bar) latency for all of the DeathStarBench workflows [27].

7.3 Are there benefits to merging workflows?
There are many sides to this question, as there are different
benefits that one could expect from merging workflows.

Hypothesis 1. Merging workflows: (1) reduces median and
tail completion latency; (2) improves throughput because of
reduced overhead; and (3) uses less memory because func-
tions reuse the container, runtime, and libraries.

We perform two experiments to test this hypothesis.

7.3.1 Experiment 1: Effect on latency. We want to show
that given the same resources, Quilt improves latency. To do
so, we set Fission’s Max Scale limit for each function in a
workflow to 10, and each container is given 2 vCPUs and
128 MB of RAM. What this means is that our smallest test
workflow which has 2 functions can use 20 containers (40
cores), whereas our largest workflow which has 15 functions
can scale to 150 containers (300 cores). Given these resource
limits and profiling of the functions (§7.5.1), Quilt’s deci-
sion algorithm (§4.2) determined that each workflow can be
merged into a single binary, so this is exactly what we do. We
then give Quilt the same resources as the baseline (i.e., if the
baseline uses 20 containers, Quilt also gets 20 containers).

Figure 6 shows the median and 99th percentile latency of
running wrk2 with 1 connection at low load for 10 minutes
on each workflow (we warm up the system prior to collecting
results). We test workflows using both synchronous and asyn-
chronous invocations, except for the HR application which
cannot profitably use asynchronous invocations.

Results. Quilt reduces median latency by 45.63%–70.95%
and tail latency by 15.64%–85.47% across 9 of 11 workflows
(Figure 6, left graph). The remaining two workflows are from
the HR application and show limited improvement because
they take multiple seconds to complete(Figure 6, right graph);
reducing invocation overhead makes little difference for them.

Takeaway. Quilt benefits workflows whose functions run on
the order tens of milliseconds or less. Workflows with expen-
sive functions do not benefit from Quilt, and one should be
strategic about which workflows to optimize.

7.3.2 Experiment 2: Effect on throughput and resources.
We want to confirm if Quilt increases throughput since we
expect merged functions to do less work by avoiding certain
code paths (e.g., HTTP handling), and to use less memory by
amortizing the container and runtime. As with Experiment 1,
we give each function 10 containers with 2 vCPUs and 128
MB of RAM. One challenge is that in the DeathStarBench
applications the bottleneck is the database (KeyDB or Mem-
cached) and not the functions’ execution; it is therefore hard
to observe Quilt’s effect. To isolate the benefits of Quilt, we
replace the databases used by all the stateful functions with
fake calls: the database result is hardcoded into the function
and a sleep simulates the database’s response delay.

We run the baseline, container merge (CM), and Quilt
with load generated by wrk2 for 10 mins, and collect la-
tency, throughput, and memory usage for that load. We give
the median latency and throughput for the compose-post
workflow from the SN application in Figures 7a and 7b. These
results are representative of our other workflows.

Results. The baseline achieves low throughput and high la-
tency. We observe that the latency decreases as the load in-
creases, before increasing again once the system reaches satu-
ration and is overloaded. This behavior is actually inherent to
Fission’s scheduler on our testbed and we replicate it in other
experiments (§7.5.1) and when running Quilt and CM.

CM reduces latency by 31.56% (sync) and 25.89% (async)
over the baseline but does not improve throughput (observe
only the yellow line). The reason is that when load is high,
Fission runs multiple instances of a function in the same
container until it reaches a utilization threshold (default is
80% of allocated vCPUs). But in CM, each function then
calls other functions through the internal API gateway, so
the entire workflow ends up running in the same container.
This also means that Fission inadvertently ends up launching
multiple instances of the entire workflow in the same con-
tainer, eventually exceeding the memory limits and getting
the container killed. The gray line that completes the yellow
line is the performance that CM can achieve if we double the
container memory limit to 256 MB.

11

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

0 1000 2000 3000 4000 5000
Throughput (requests/second)

0

50

100

150

200
La

te
nc

y
(m

s)

quilt
baseline
container merge

(a) Compose Post (sync)

0 1000 2000 3000 4000
Throughput (requests/second)

0

20

40

60

80

100

La
te

nc
y

(m
s)

quilt
baseline
container merge

(b) Compose Post (async)

0 100 200 300 400
Throughput (requests/second)

0

20

40

60

La
te

nc
y

(m
s)

merge all
merge into 2
baseline

(c) Nearby Cinema (async, modified)

Figure 7. Median latency and throughput with varying load for the compose-post workflow (sync and async) and our
modified nearby-cinema workflow (see Section 7.4.1). Containers in (c) have a limit of 1.6 vCPU and 320 MB of RAM.

But why does CM improve throughput if it runs the same
code as the baseline? Better CPU sharing: each of the base-
line’s 11 functions use 10 containers, but the single CM func-
tion uses 110 containers each running the entire workflow.
Many functions in the workflow call other functions and then
wait for a response. In CM the spare cycles are used by other
functions in the workflow. In the baseline, this effect is limited
to instances of the same function in the same container.

The same principle applies to Quilt, which achieves 65.74%
(sync) and 51.0% (async) lower latency and 11.24× (sync)
and 12.87× (async) higher throughput than the baseline. Quilt
also does not encounter out-of-memory issues despite each
container running the same number of functions as CM, since
Quilt’s merged function uses less memory. Finally, Quilt does
less total work during each function invocation.
Memory use. As we alluded to, Quilt uses less memory than
CM and the baseline. Appendix E gives the size of each
function binary and Quilt’s merged binaries. In short, Quilt’s
merged binaries are 3.4%–86.7% smaller than the sum of the
corresponding function binaries (except for one where Quilt’s
merged binary is 9% larger). Further, Quilt’s merged binaries
amortize the memory use of the mutable parts of shared li-
braries (normally copied across processes) and reduces the
number of TCP buffers maintained by the OS.
Takeaway. Quilt improves both throughput and latency, in
part because it does less work, in part because it eliminates
invocation overhead, and in part because it shares the CPU
more flexibly than the baseline. In combination with Experi-
ment 1, we think there is enough evidence to reject the null
hypothesis (merging does not help) and favor Hypothesis 1.

7.4 Should we merge entire workflows?
In the previous section Quilt was able to merge the entire
workflow into a single function without adverse consequences.
We do not think this is always the case.
Hypothesis 2. Merging all functions can lead to containers
being killed or throttled, limiting the application’s throughput.

7.4.1 Experiment 3: Effect of resource limits. The pre-
vious section shows (for CM) that if one places too many

functions in a container one will exceed memory limits and
get the container killed. We now focus on CPU usage.

Unfortunately, functions in DeathStarBench are not CPU
intensive. We modify the nearby-cinema workflow as
follows. The original has two functions: nearby-cinema
(NC) and get-nearby-points (GNP). GNP fetches data
from the database and filters it according to GPS location and
then gives NC the closest 5 points. Our modified version has
9 functions: 6 are identical to GNP but work over 300K data
points, 2 new functions aggregate the GNP results (3 each),
and the original NC function calls the 2 aggregators. We set
container limits to 1.6 vCPUs and 320 MB of RAM.

The baseline runs each function on 10 containers (90 total),
while Quilt uses 90 containers for its single merged function.
Figure 7c gives the median latency and throughput.
Results. If Quilt merges all of the functions in this workflow
its latency is 42.13% better than the baseline, but its through-
put is 11.64% worse. The reason is that Quilt’s binary exceeds
the CPU limit and is throttled. In contrast, if we split the work-
flow into 2 merged binaries following the optimal split (light
blue line), Quilt’s throughput is 50.75% higher than the base-
line as it avoids throttling and can better use resources (same
argument as Experiments 1 and 2). The figure also shows that
merging all functions is better in terms of latency than merg-
ing some. This is because with partial merges Quilt has to
perform cross-container invocations, which introduce latency
and forces Quilt to load libcurl (§5.2).
Takeaway. Experiment 2 and 3 provide preliminary evidence
that merging all functions is not always a good idea, partic-
ularly at high load. This suggests that providers should be
intelligent about when and what to merge.

7.5 How expensive is it to merge?
Merging workflows is not free. It requires the provider (or
developers) to invest resources to profile functions, decide
what to merge, and then actually merge functions.

Hypothesis 3. Profiling is lightweight, whereas deciding what
to merge and performing the merge scales with the size of the
workflow and could require seconds or minutes.

12

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

500 1000 1500 2000
Throughput (requests/sec)

8.0

8.5

9.0

9.5

10.0

La
te

nc
y

(m
s)

baseline
tracing-enabled

(a) Performance of noop function.

5 10 15 20 25 50 100 200 400 800
Graph size (number of vertices)

0

100

200

300

400

500

600

Ti
m

e
(s

ec
on

ds
)

Optimal
Downstream Impact
Weighted Degree

(b) Time to find good feasible grouping

2 4 6 11 15
functions merged

0

50

100

150

Ti
m

e
(s

ec
on

ds
) compilation

merging
linking

(c) Time to merge functions

Figure 8. Time required to profile functions, find the best grouping, and perform the merging.

5 10 15 20 25
Graph Size (Nodes)

0.00

0.05

0.10

0.15

0.20

O
pt

im
al

ity
 G

ap

Downstream Impact
Weighted Degree

(a) Heuristics vs. Optimal

50 100 200 400 800
Graph Size (Nodes)

0

1000

2000

3000

4000

C
os

t R
el

at
iv

e
to

 B
es

t H
eu

ri
st

ic

Downstream Impact
Weighted Degree

(b) Quality of both heuristics

Figure 9. Quality of the merging solutions. See the main text
for a description of how we compute the optimality gap. In
both figures, a lower value is better; error bars are stdev.

7.5.1 Experiment 4: Cost of profiling. We take a no-op
function that performs no computation or memory allocation
and measure its latency and throughput across loads with
wrk2. We then perform the same experiment but with profil-
ing and tracing enabled. This serves two purposes: (1) it gives
a baseline idea of Fission’s behavior when handling a single
function; (2) it shows a lower bound on the cost of tracing
and profiling, since we pay for this cost for each invocation
in a workflow. Figure 8a gives the results.
Results. As we foreshadowed in Section 7.3.2, the median
latency of the no-op function decreases as load increases. This
relates to how Fission routes requests and reuses containers.
We also observe minimal impact from tracing and profiling.
The ingress node that collects caller-callee information is
collocated with the API gateway, and cAdvisor [5] reads basic
statistics from cgroup and proc virtual files (collected even
without cAdvisor) and streams them to InfluxDB.

7.5.2 Experiment 5: Cost of finding good merges. We
create random rDAGs with varying numbers of vertices and
20% more edges that vertices. We make 10% of the edges
asynchronous. Vertices are assigned random CPU and mem-
ory usage; we set the maximum memory and CPU limits so
that the rDAG needs at least 2 containers to satisfy all con-
straints. We then run 3 algorithms: optimal, approximate with
a simple heuristic (weighted in-degree), and approximate with
Downstream Impact (§4.3). We repeat graph generation and

measurement 100 times for each graph size and report the
median (bar height), and 5th and 95th percentile (error bars).
Results. Merging optimally is efficient for small workflows
(<20 functions), but too costly for large workflows. The Down-
stream Impact heuristic, on the other hand, is very fast (Fig-
ure 8b), requiring <0.27 sec (median time) for graphs with
up to 200 nodes, and 3.10 sec for graphs with 800 nodes.

But being fast is not meaningful if it produces poor results.
This is why we also study the quality of the merging decision.
We use the optimality gap as a normalized metric that allows
for fair comparison across different problem sizes and graph
structures. It quantifies the fraction of the total possible cross-
container cost reduction (compared to not merging) that a
given heuristic fails to capture.

We compute the gap as (CostH −CostO)/(CostB −CostO),
where CostH, CostO, and CostB are the number of non-local
calls required under the heuristic, optimal, and non-merging
baseline, respectively. In short, the numerator represents the
absolute error of the heuristic, while the denominator rep-
resents the potential for improvement over the non-merge
baseline. A value of 0 means that the heuristic found the opti-
mal solution, whereas a value closer to 1.0 indicates that the
heuristic’s solution is no better than the baseline.

Figure 9a gives the results. The Downstream Impact Heuris-
tic is not only very fast (as we argued earlier), but this speed
does not come with a big compromise in quality: the solu-
tions that it finds are optimal or close to optimal across all the
configurations that we could test (graphs with up to 25 nodes),
with an optimality gap of 0.0394 at 25 nodes. In contrast,
the simpler heuristic produces poor solutions. For example,
Figure 9b shows that Downstream Impact leads to up to hun-
dreds of times fewer non-local calls than the simpler weighted
degree heuristic on our randomly generated graphs.

7.5.3 Experiment 6: Cost of compiling and merging. To
measure compiling and merging time we use workflows from
DeathStarBench. Figure 8 shows all results.

A large proportion of the time (about a 1.5 minutes) is spent
compiling functions and linking libraries. Compile and link-
ing time depends on the provided code, but the biggest factor
is the code’s dependencies. This is why there is no difference
between compiling and linking read-home-timeline (2

13

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

5 13
Client input value (num)

0

20

40

60

80

100
En

d-
to

-e
nd

 L
at

en
cy

 (m
s)

Baseline
Quilt
Quilt (no conditional)

Figure 10. Median latency of a function that invokes a
memory-intensive callee num times (§5.6). The container
can handle a fan-out of up to 6. When num ≤ 6, Quilt can
process all calls locally. When num > 6, functions merged
by Quilt without conditional invocations crash; conditional
invocations prevents crashes. Error bars are 10th and 90th pct.

functions) and compose-review (15 functions). The com-
piling time could be eliminated if developers upload LLVM
IR instead of source code. Indeed, any platform that plans to
support C, C++, Rust, Swift, or Go has to compile and link the
code anyway (so neither action introduces overhead over the
status quo) or ask developers to upload binaries/containers.

Merging time scales linearly with the number of functions
and is of the same order of magnitude as compiling or linking.

Takeaway. Experiment 4 shows that Quilt can profile with
very minimal overhead to understand the needs of workflows
and the opportunities for merging. Experiment 5 then shows
that Quilt can make merging decisions quickly and close
to optimally. The major issue is compiling and merging the
functions (Experiment 6). But this is a one-time background
operation that only needs to be re-done whenever functions
or workflows change or are updated. Spending 2 minutes is
justifiable when workflows are invoked often.

7.6 What if the call graph edge values are wrong?
Hypothesis 4: If the profile is not good at capturing invoca-
tion frequency, merged functions can exhaust resource limits.
However, Quilt’s conditional invoke prevents this problem.

To test this hypothesis we implement the data-dependent
fan-out example of Section 5.6. We make the callee memory
intensive to the point that at most 6 instances can run in the
same process without exceeding memory limits. We then have
clients issue requests with input values below or above the
profiled call frequency. Figure 10 shows the result. Quilt with
conditional invocations improves latency in both cases by
eliminating all remote calls when client values are below the
profiled edge, and ≈46% of remote calls otherwise.

Takeaway. Quilt’s use of conditional invocations (§5.6) elim-
inates the risks of poor profiling of function call frequencies.

8 Discussion
Merging time and language support. Quilt’s compilation
and merging takes considerable time and it is restricted to
languages that produce LLVM IR. We are currently exploring
the idea of building Quilt on top of Junction [26] to address
both limitations. With Junction, we could merge binaries di-
rectly into the same address space, avoiding LLVM entirely
and working with functions written in all languages. The
drawbacks are that it will not work with unmodified server-
less platforms, will create larger binaries since we cannot
deduplicate functionality or perform program debloating, and
requires injecting an “internal API gateway” into the process
similar to what we did with the CM baseline in Section 7.2.

Unrepresentative CPU and Memory profiling. If CPU and
memory profiles are poor, the provider will start to notice
workflows either crashing (due to container memory limits)
or being throttled. In these cases the provider can then roll
back the merge (which is fast as we discuss next). Note that
crashes need to be handled carefully if functions are stateful
due to state consistency issues [42]. However, this is true of
single functions as well, which can crash even without Quilt.
This is why systems like Beldi [42] and Boki [28] have been
proposed to ensure consistency in the presence of failures.

Roll back merges. In cases where a merge is deemed un-
suitable because the workload changed, a function’s code is
updated, or the expected performance benefits did not mate-
rialize, the provider can simply replace the entry container
of a merged workflow (or sub-workflow) with the original
container. This reverts the workflow (or sub-workflow) to
its original state. This operation is already supported since
providers must deal with function updates triggered by users.

Function-level isolation. Quilt targets workflow-level isola-
tion, so functions in a workflow can interact in the same way
as libraries linked into traditional monolithic applications. If
one really needs function-level isolation, Quilt could borrow
ideas from prior works [31, 40] that use software fault iso-
lation and Intel Memory Protection Keys to provide some
additional assurances. Quilt could also use rWASM [20] since
LLVM IR can be lowered to WASM.

Per-function billing. Merged functions obscure the serverless
billing boundary because now many functions run as one. In
many cases this might not be an issue. But if one desires per-
function billing it might be possible to instrument the merged
code with billing-related operations via LLVM. We did not
do this in Quilt.

Acknowledgments
We thank the anonymous SOSP reviewers for their feedback
which improved this paper. This work was funded in part by
NSF Awards CCF-2326576, CCF-2124184, CNS-2107147,
and CNS-2321726.

14

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Amazon simple queue service. https://aws.amazon.com/sqs/.
[2] Apache OpenWhisk: Open source serverless cloud platform. https:

//openwhisk.apache.org/.
[3] Aws lambda faqs. https://aws.amazon.com/lambda/faqs/.
[4] Aws step functions. https://aws.amazon.com/step-functions/.
[5] cAdvisor: Analyzes resource usage and performance characteristics of

running containers. https://github.com/google/cadvisor.
[6] A constant throughput, correct latency recording variant of wrk. https:

//github.com/giltene/wrk2.
[7] Datadog: the state of serverless (2021). https://www.datadoghq.com/

state-of-serverless-2021/.
[8] Datadog: the state of serverless (2022). https://www.datadoghq.com/

state-of-serverless-2020/.
[9] Fission: Open source kubernetes-native serverless framework. https:

//www.fission.io/.
[10] Gollvm. https://go.googlesource.com/gollvm/.
[11] Grafana tempo oss | distributed tracing backend. https://grafana.com/

oss/tempo/.
[12] A high-performance, zero-overhead, extensible Python compiler with

built-in NumPy support. https://github.com/exaloop/codon.
[13] Implib.so, posix equivalent of windows dll import libraries. https:

//github.com/yugr/Implib.so.
[14] InfluxDB. https://www.influxdata.com/lp/influxdb-database/.
[15] Lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/

gettingstarted-limits.html.
[16] The leader in decision intelligence technology – Gurobi optimization.

https://www.gurobi.com/.
[17] llvm language reference manual. https://llvm.org/docs/LangRef.html.
[18] Openfaas | serverless functions, made simple. https://www.openfaas.

com/.
[19] Opentelemetry, high-quality, ubiquitous, and portable telemetry to en-

able effective observability. https://opentelemetry.io/.
[20] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe multi-

lingual software sandboxing using WebAssembly. In Proceedings of
the USENIX Security Symposium, 2022.

[21] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Speedo: Fast
dispatch and orchestration of serverless workflows. In Proceedings of
the ACM Symposium on Cloud Computing (SOCC), 2021.

[22] Tarek Elgamal, Atul Sandur, Klara Nahrstedt, and Gul Agha. Costless:
Optimizing cost of serverless computing through function fusion and
placement. In Proceedings of the USENIX Security Symposium, 2018.

[23] Thomas A Feo and Mauricio GC Resende. A probabilistic heuristic for
a computationally difficult set covering problem. Operations research
letters, 8(2):67–71, 1989.

[24] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to
lambda: Outsourcing everyday jobs to thousands of transient functional
containers. In Proceedings of the USENIX Annual Technical Conference
(ATC).

[25] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, fast and slow:{Low-
Latency} video processing using thousands of tiny threads. In Pro-
ceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2017.

[26] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Íñigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. Mak-
ing kernel bypass practical for the cloud with junction. In Proceedings
of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2024.

[27] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris

Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[28] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2021.

[29] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable
serverless computing for latency-sensitive, interactive microservices. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2021.

[30] Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and
Vincent Liu. Executing microservice applications on serverless, cor-
rectly. Proceedings of the ACM on Programming Languages, 7(POPL),
2023.

[31] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
Faastlane: Accelerating Function-as-a-Service workflows. In Proceed-
ings of the USENIX Annual Technical Conference (ATC), 2021.

[32] Collin Lee and John Ousterhout. Granular computing. In Proceedings
of the Workshop on Hot Topics in Operating Systems (HotOS), 2019.

[33] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huang-
shi Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic,
Haoran Yang, et al. SONIC: Application-aware data passing for chained
serverless applications. In Proceedings of the USENIX Annual Techni-
cal Conference (ATC), 2021.

[34] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
Wisefuse: Workload characterization and dag transformation for server-
less workflows. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 6(2), 2022.

[35] Sheng Qi, Xuanzhe Liu, and Xin Jin. Halfmoon: Log-optimal fault-
tolerant stateful serverless computing. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2023.

[36] Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang,
Abhigna Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang,
Wyatt Cook, Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dim-
itrios Skarlatos, Vipul Patel, Ravinder Thind, Ernesto Gonzalez, Yun
Jin, and Chunqiang Tang. Xfaas: Hyperscale and low cost serverless
functions at meta. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2023.

[37] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. Fusionize: Improving serverless application performance
through feedback-driven function fusion. In IEEE International Con-
ference on Cloud Engineering (IC2E), 2022.

[38] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David
Bermbach. Fusionize++: Improving serverless application performance
using dynamic task inlining and infrastructure optimization. IEEE
Transactions on Cloud Computing, 2024.

[39] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In Proceedings of the USENIX Annual Technical Conference (ATC),
2020.

[40] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for
efficient stateful serverless computing. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2020.

[41] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
Proceedings of the USENIX Annual Technical Conference (ATC), 2018.

[42] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel,
and Vincent Liu. Fault-tolerant and transactional stateful serverless

15

https://aws.amazon.com/sqs/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/step-functions/
https://github.com/google/cadvisor
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.fission.io/
https://www.fission.io/
https://go.googlesource.com/gollvm/
https://grafana.com/oss/tempo/
https://grafana.com/oss/tempo/
https://github.com/exaloop/codon
https://github.com/yugr/Implib.so
https://github.com/yugr/Implib.so
https://www.influxdata.com/lp/influxdb-database/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://www.gurobi.com/
https://llvm.org/docs/LangRef.html
https://www.openfaas.com/
https://www.openfaas.com/
https://opentelemetry.io/

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

20

20 20

20

20

1010

100100

10

Num subgraphs: 3
Sum of cross weights: 200

Num subgraphs: 4
Sum of cross weights: 30

20

20

10

20

20 20

20

20

1010

100
100

10

20

20

10

Figure 11. Two feasible groupings for a workflow with 7
functions and a memory constraint of 60 units. Node values
indicate memory usage, and edges indicate call frequency.
The left figure shows 3 subgraphs (purple, green, blue). The
right figure shows 4 subgraphs (purple, green, red, blue). The
right figure is better as it has a lower cross-graph cost.

workflows. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[43] Haoran Zhang, Shuai Mu, Sebastian Angel, and Vincent Liu.
Causalmesh: A causal cache for stateful serverless computing. Pro-
ceedings of the VLDB Endowment, 2024.

[44] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.
Aquatope: Qos-and-uncertainty-aware resource management for multi-
stage serverless workflows. In Proceedings of the International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2022.

A Are fewer subgraphs always better?
Figure 11 gives a simple example that shows that in some
cases, having more subgraphs can result in lower sums of
cross-edge weights (and therefore fewer cross-function in-
vocations). As a result, an optimal solution would need to
try every possible value of 𝑘 (the number of subgraphs). For
large graphs, this is impossible. For example, if a graph has
100 nodes, the number of possible ways to select 𝑘 = 50
roots is

(|100 |−1
50−1

)
≥ 1028 ≈ 293. As a result, in our evalua-

tion we cannot run the optimal solution on large graphs; our
heuristic solution obviously does not explore all possible root
combinations for large graphs either.

B Constraints for Optimal ILP
This appendix details the full Integer Linear Program (ILP)
for the subgraph construction phase, extending the model
from the main text to incorporate distinct resource accounting
for synchronous and asynchronous function invocations.

B.1 Input Parameters
• 𝐺 = (𝑉 , 𝐸): The directed acyclic graph of the workflow,

where 𝑉 is the set of functions and 𝐸 is the set of edges
representing invocations.
• 𝑅 ⊆ 𝑉 : A given set of nodes chosen to be potential

roots of subgraphs.

• 𝑚𝑖 , 𝑐𝑖 : The baseline memory and CPU requirements for
each function 𝑖 ∈ 𝑉 .
• 𝑤𝑖, 𝑗 : The total number of invocations from function 𝑖

to function 𝑗 over a measurement period.
• 𝑁 : The total number of times the entire workflow was

invoked during the same measurement period. Observe
that 𝑤𝑖, 𝑗/𝑁 represents the average number of invoca-
tions from 𝑖 to 𝑗 per workflow execution over a mea-
surement period. Since we need variables to be integers,
we will upper bound this value by 𝛼𝑖, 𝑗 = ⌈𝑤𝑖, 𝑗/𝑁 ⌉ .
• 𝐸sync, 𝐸async: The partition of edges 𝐸 into synchronous

and asynchronous invocations, where 𝐸 = 𝐸sync∪𝐸async.
• 𝑀,𝐶: The maximum memory and CPU capacity per

provisioned container.

B.2 Decision Variables
• 𝑥𝑖, 𝑗 ∈ {0, 1}: A binary variable for each edge (𝑖, 𝑗) ∈ 𝐸.

If the edge (𝑖, 𝑗) ∈ 𝐸 is a cross-edge (i.e., it is a cut),
𝑥𝑖, 𝑗 = 1; otherwise if it is internal to a subgraph 𝑥𝑖, 𝑗 = 0.
• 𝑦𝑖,𝑟 ∈ {0, 1}: A binary variable that is 1 if function
𝑖 ∈ 𝑉 is assigned to the subgraph rooted at 𝑟 ∈ 𝑅, and
0 otherwise. Note that a function can be assigned to
multiple subgraphs, allowing for duplication.
• 𝑧𝑖, 𝑗,𝑟 ∈ {0, 1}: An auxiliary binary variable for each

edge (𝑖, 𝑗) ∈ 𝐸𝑟 . It is constrained to be 1 if and only
if both function 𝑖 and function 𝑗 are assigned to the
subgraph rooted at 𝑟 ∈ 𝑅. This variable indicates that
the call is internal to subgraph 𝐺𝑟 .

B.3 Objective Function
The goal is to minimize the sum of cross-graph edge weights:

Minimize
∑︁
(𝑖, 𝑗) ∈𝐸

𝑤𝑖, 𝑗 · 𝑥𝑖, 𝑗

B.4 Constraints
The following 4 constraints ensure the structure and the cov-
erage of the subgraphs.

1. Root Inclusion: Every chosen root 𝑟 must belong to its
own subgraph.

𝑦𝑟,𝑟 = 1 ∀𝑟 ∈ 𝑅

2. Node Coverage: Every function 𝑖 in the graph must be
assigned to at least one subgraph.∑︁

𝑟 ∈𝑅
𝑦𝑖,𝑟 ≥ 1 ∀𝑖 ∈ 𝑉

3. Connectivity: If a function 𝑗 is in subgraph 𝐺𝑟 and is
not the root, at least one of its predecessors must also be
in 𝐺𝑟 . This ensures the subgraph is a connected rDAG.

𝑦 𝑗,𝑟 ≤
∑︁
(𝑖, 𝑗) ∈𝐸

𝑦𝑖,𝑟 ∀𝑟 ∈ 𝑅,∀𝑗 ∈ 𝑉 \ {𝑟 }

16

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

4. Cross-Edge Definition: This constraint links the 𝑥 and
𝑦 variables. It defines a cross-edge (𝑖, 𝑗) as one where,
for any given subgraph 𝐺𝑟 , 𝑖 ∈ 𝑉𝑟 but 𝑗 ∉ 𝑉𝑟 .

𝑥𝑖, 𝑗 ≥ 𝑦𝑖,𝑟 − 𝑦 𝑗,𝑟 ∀(𝑖, 𝑗) ∈ 𝐸,∀𝑟 ∈ 𝑅

To understand the above inequality, observe that since
the edge weights 𝑤𝑖, 𝑗 are always positive, the objective
function is minimized when every 𝑥𝑖, 𝑗 is as small as
possible; the solver will try its hardest to set every 𝑥𝑖, 𝑗
to 0. The only time it will set 𝑥𝑖, 𝑗 to 1 is when it has no
choice: ∃𝑟 such that 𝑖 ∈ 𝑉𝑟 and 𝑗 ∉ 𝑉𝑟 .

5. Cross-Edge Root Rule: If an edge (𝑖, 𝑗) ∈ 𝐸 exists
and its target 𝑗 is not a root (𝑗 ∉ 𝑅), then for any given
subgraph 𝐺𝑟 , if the source 𝑖 is included in 𝐺𝑟 , the target
𝑗 must also be included in 𝐺𝑟 . This forces edges not
pointing to roots to be internal.

𝑦𝑖,𝑟 ≤ 𝑦 𝑗,𝑟 ∀(𝑖, 𝑗) ∈ 𝐸 s.t. 𝑗 ∉ 𝑅,∀𝑟 ∈ 𝑅

The following two constraints ensure that the total resource
consumption for each merged subgraph does not exceed the
container limits. Asynchronous calls imply parallelism and
are thus more memory-intensive than synchronous calls.

6. Memory Capacity (M): For each subgraph 𝐺𝑟 , the
total memory is the sum of baseline memories of all
included functions, plus an additional scaled memory
cost for each internalized asynchronous call.

𝑚𝑟 +
∑︁
(𝑖, 𝑗) ∈𝐸𝑟

𝑚 𝑗 · 𝑧𝑖, 𝑗,𝑟 +
∑︁

(𝑖, 𝑗) ∈𝐸𝑟,async

𝑚 𝑗 · (𝛼𝑖, 𝑗 − 1) · 𝑧𝑖, 𝑗,𝑟 ≤ 𝑀

The first sum
∑
𝑚 𝑗 · 𝑧𝑖, 𝑗,𝑟 accounts for one instance of

each function. If the edge is asynchronous, then the
second term 𝑚 𝑗 · (𝛼𝑖, 𝑗 − 1) adds the memory for the
additional 𝛼𝑖, 𝑗 − 1 expected concurrent instances of 𝑗 .

7. CPU Capacity (C): The CPU cycles used by function
𝑗 cannot be “returned” when 𝑗 completes, so there is
no difference in treatment between synchronous and
asynchronous edges. We therefore scale the cost of 𝑗

by 𝛼𝑖, 𝑗 . For each subgraph 𝐺𝑟 :

𝑐𝑟 +
∑︁
(𝑖, 𝑗) ∈𝐸𝑟

𝑐 𝑗 · 𝛼𝑖, 𝑗 · 𝑧𝑖, 𝑗,𝑟 ≤ 𝐶

The capacity constraints (6 and 7) depend on whether a call
from 𝑖 to 𝑗 is internal to a subgraph 𝐺𝑟 . This condition is true
only if both 𝑦𝑖,𝑟 = 1 and 𝑦 𝑗,𝑟 = 1. A direct representation in
the capacity constraint would involve the product of these two
binary variables (𝑦𝑖,𝑟 · 𝑦 𝑗,𝑟), which would make the constraint
non-linear. Integer Linear Programs, by definition, cannot
handle such non-linearities.

To overcome this, we introduce the auxiliary binary vari-
able 𝑧𝑖, 𝑗,𝑟 and a set of linear constraints that force it to behave
like the product 𝑦𝑖,𝑟 · 𝑦 𝑗,𝑟 . This standard technique, known as
linearization, allows us to keep the entire model within the
solvable realm of ILP.

The following three inequalities collectively enforce the
logical condition 𝑧𝑖, 𝑗,𝑟 ⇐⇒ (𝑦𝑖,𝑟 ∧ 𝑦 𝑗,𝑟).

8. Auxiliary Variable Linearization:

𝑧𝑖, 𝑗,𝑟 ≤ 𝑦𝑖,𝑟 ∀(𝑖, 𝑗) ∈ 𝐸𝑟 ,∀𝑟 ∈ 𝑅 (1)

𝑧𝑖, 𝑗,𝑟 ≤ 𝑦 𝑗,𝑟 ∀(𝑖, 𝑗) ∈ 𝐸𝑟 ,∀𝑟 ∈ 𝑅 (2)

𝑧𝑖, 𝑗,𝑟 ≥ 𝑦𝑖,𝑟 + 𝑦 𝑗,𝑟 − 1 ∀(𝑖, 𝑗) ∈ 𝐸𝑟 ,∀𝑟 ∈ 𝑅 (3)

Inequalities (1) and (2) ensure that if either 𝑦𝑖,𝑟 or 𝑦 𝑗,𝑟 is 0,
then 𝑧𝑖, 𝑗,𝑟 must also be 0. Inequality (3) ensures that if both
𝑦𝑖,𝑟 and 𝑦 𝑗,𝑟 are 1, then 𝑧𝑖, 𝑗,𝑟 must be at least 1 (and thus 1,
since it is binary). Together, they model the logical AND.

C Approximate Merge Decision Algorithm
The partitioning problem in Section 4.2 is NP hard. Our op-
timal algorithm requires exploring a vast search space. In
particular, it works on two phases:

1. Phase 1 (Root Selection): Output a listR = {𝑅1, . . . , 𝑅ℓ }
of promising sets of nodes 𝑅𝑖 = {𝑟1, . . . , 𝑟𝑘 } to serve as
the roots for the 𝑘 subgraphs. The original graph root,
𝑟𝐺 , must be included in every 𝑅𝑖 .

2. Phase 2 (Subgraph Construction): For a fixed set 𝑅,
use an exact method like Integer Linear Programming
(ILP) to assign nodes to subgraphs 𝐺1, . . . ,𝐺𝑘 such
that all constraints are met and the cross-edge cost is
minimized for that specific choice of R.

The quality of the final solution heavily depends on the
effectiveness of the approach used in Phase 1 to select the
candidate root sets 𝑅. Simple heuristics, such as selecting
candidates based solely on weighted in-degree (the sum of
weights of incoming edges), weighted out-degree, or high
betweenness centrality (meaning that it might connect dif-
ferent dense regions) are often insufficient and produce poor
approximations (as we show in Section 7.4.1). The reason
is that they only consider the immediate, local cost of poten-
tially cutting edges ending at a node 𝑗 . They fail to account
for a crucial factor: the cumulative resource demands of the
portion of the graph reachable from node 𝑗 . If node 𝑗 is the
gateway to a large, resource-intensive subgraph, forcing this
entire subgraph into another subgraph (if 𝑗 is not made a root)
might easily violate the memory or CPU constraints (𝑀 or𝐶).
Making 𝑗 a root allows this resource-heavy part to potentially
form its own subgraph, relieving capacity pressure elsewhere.

We formalize this intuition into what we call the Down-
stream Impact Heuristic. This heuristic evaluates potential
root candidates based on a combination of incoming edge
pressure and the resource footprint of their descendants.

C.1 Downstream Impact Heuristic Score
For each node 𝑗 ∈ 𝑉 (where 𝑗 is not the main graph root 𝑟𝐺),
we calculate a score, Score(𝑗), reflecting its suitability as a
root candidate. This involves pre-calculating:

17

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

• D(𝑗): The set of all descendant nodes reachable from
𝑗 (including 𝑗) in 𝐺 .
• 𝐸 (D(𝑗)): The set of edges (𝑢, 𝑣) where both 𝑢, 𝑣 ∈
D(𝑗).
• 𝐸async (D(𝑗)): The set of asynchronous edges within
𝐸 (D(𝑗)).
• 𝑀𝑑𝑠 (𝑗): The memory usage of all descendants of 𝑗 if

they were merged, calculated using the conservative
upper bound.

𝑀𝑑𝑠 (𝑗) =𝑚 𝑗+
∑︁

(𝑢,𝑣) ∈𝐸 (D (𝑗))
𝑚𝑣+

∑︁
(𝑢,𝑣) ∈𝐸async (D (𝑗))

𝑚𝑣 · (𝛼𝑢,𝑣−1)

• 𝐶𝑑𝑠 (𝑗): The CPU usage of all descendants of 𝑗 , account-
ing for invocation counts.

𝐶𝑑𝑠 (𝑗) = 𝑐 𝑗 +
∑︁

(𝑢,𝑣) ∈𝐸 (D (𝑗))
𝑐𝑣 · 𝛼𝑢,𝑣

• 𝑊𝑖𝑛 (𝑗) =
∑
(𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 : The sum of weights of edges

incoming to 𝑗 .

The score is then calculated as a weighted sum of normal-
ized components:

Score(𝑗) = 𝛽 · 𝑊𝑖𝑛 (𝑗)
max𝑣∈𝑉 \{𝑟𝐺 }𝑊𝑖𝑛 (𝑣) + 𝜖

+𝛾 ·𝑀𝑑𝑠 (𝑗)
𝑀 + 𝜖 +𝛿 ·

𝐶𝑑𝑠 (𝑗)
𝐶 + 𝜖

Where:

• The first term represents the normalized weighted in-
degree, capturing the direct cost pressure of incoming
edges. Normalization is done against the maximum ob-
served weighted in-degree among potential candidates.
• The second term represents the normalized downstream

memory impact. Normalizing by the global limit 𝑀
directly reflects the pressure this downstream subgraph
exerts relative to the capacity constraint.
• The third term represents the normalized downstream

CPU impact, normalized by 𝐶.
• 𝛽,𝛾, 𝛿 are non-negative weights (summing to 1) that

control the influence of each factor.
• 𝜖 > 0 is a small constant to prevent division by zero.

Candidate Pool Selection. The nodes 𝑗 ∈ 𝐺 \ {𝑟𝐺 } are ranked
according to their calculated Score(𝑗) in descending order.
The top ℓ nodes (where ℓ is a user-defined parameter) are
selected to form the pool of root candidates, denoted P.

Phase 1 then proceeds by exploring root sets 𝑅 of size 𝑘

(up to a maximum 𝑘𝑚𝑎𝑥), where each 𝑅 is constructed as
𝑅 = {𝑟𝐺 } ∪ 𝑅′, with 𝑅′ ⊆ P and |𝑅′ | = 𝑘 − 1.

C.2 Effectiveness of the Downstream Impact Heuristic
Despite being an approximation, the Downstream Impact
Heuristic works much better than simpler heuristics because
its scoring mechanism directly addresses the key drivers of
partitioning complexity in our problem.

Edge Costs (via 𝑊𝑖𝑛 (𝑗) and 𝛼): It still considers the direct
cost implication of incoming edges. Nodes with high-weight
incoming edges are prioritized, as making them roots poten-
tially avoids paying those high costs if the edges need to cross
subgraph boundaries.

Capacity Pressure (via 𝑀𝑑𝑠 (𝑗), 𝐶𝑑𝑠 (𝑗), 𝛽, 𝛾): This is the key
improvement. By evaluating the total resource cost of all
descendants, the heuristic identifies nodes 𝑗 that act as bot-
tlenecks for large, resource-intensive sub-parts of the graph.
In particular, if 𝑀𝑑𝑠 (𝑗) is large relative to 𝑀 , it signals that
the entire subgraph downstream from 𝑗 consumes a signifi-
cant fraction of the total allowed memory. If 𝑗 is not made a
root, this entire block of resources must be accommodated
within some other subgraph 𝐺𝑟 . This drastically increases the
likelihood of 𝐺𝑟 violating its memory limit, forcing difficult
partitioning decisions or potentially leading to infeasibility
for that choice of 𝑅.

Making such a high-impact node 𝑗 a root (i.e., including it
in 𝑅) provides an “escape valve”. The resource-heavy down-
stream portion can now potentially form its own subgraph
𝐺 𝑗 , satisfying capacity locally without overburdening other
subgraphs.

The same logic applies to 𝐶𝑑𝑠 (𝑗) and the CPU limit.

Balanced View: By combining these factors with tunable
weights (𝛽,𝛾, 𝛿), the heuristic provides a way to capture a
node’s potential role as a root, balancing the immediate edge
costs with the anticipated downstream resource challenges.
It helps identify nodes that are critical not just locally, but
structurally and resource-wise for enabling a valid, low-cost
global partition.

In essence, the Downstream Impact Heuristic guides the
search towards root sets 𝑅 that are more likely to allow the
ILP solver in Phase 2 to find a feasible solution satisfying the
capacity constraints, while still keeping an eye on minimizing
the direct cross-edge costs represented by𝑊𝑖𝑛 (𝑗).

C.3 The Downstream Impact Heuristic is Fast
While the Downstream Impact score incorporates more global
information than simpler metrics, its calculation remains ef-
ficient relative to the overall complexity of the partitioning
problem. This efficiency stems from several factors:

Precomputation phase. The most expensive step—calculating
descendant sets and their cumulative costs—is performed
once as a preprocessing step before the main loop that iterates
through different values of 𝑘 (number of roots) and combi-
nations of candidate roots. This avoids repeated expensive
calculations within the primary heuristic loop.

Descendant calculation. The set of descendants D(𝑗) for a
node 𝑗 can be found with Depth-First Search (DFS) starting
from 𝑗 . The complexity of DFS is linear in the size of the
subgraph reachable from 𝑗 : 𝑂 (|D(𝑗) | + |𝐸 (D(𝑗)) |), where
𝐸 (D(𝑗)) are edges within the descendant subgraph.

18

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Furthermore, we employ memoization when computing
D(𝑗): we recursively compute the descendants of 𝑗’s succes-
sors. If the descendants of a successor 𝑠 have already been
computed (e.g., during the calculation for another node or
a different branch of the DFS), the cached result is reused
instantly. In a DAG, where nodes can have multiple parents,
this dramatically avoids redundant traversals of shared down-
stream subgraphs. The result is that the total work across all
nodes to compute all descendant sets is significantly less than
|𝐺 | independent DFS traversals.

Finally, processing nodes in reverse topological order en-
sures that when D(𝑗) is calculated, the results for all its
successors are already memoized.

Cost aggregation. Once all descendant sets D(𝑗) and the
edges between them 𝐸 (D(𝑗)) are computed, calculating the
downstream costs 𝑀𝑑𝑠 (𝑗) and 𝐶𝑑𝑠 (𝑗) involves iterating over
these sets to apply the formulas from Section C.1. These sums
can be computed incrementally during the DFS/memoization
process. Calculating the weighted in-degree𝑊𝑖𝑛 (𝑗) requires
a simple pass over the incoming edges for each node 𝑗 , which
takes 𝑂 (|𝐸 |) time in total across all nodes.

Score calculation. After the descendant costs and weighted
in-degrees are precomputed, calculating the final Score(𝑗) for
each candidate node involves simple arithmetic operations:
normalization, multiplication by weights 𝛼, 𝛽,𝛾 , and addition.

In summary, the computationally intensive part of this algo-
rithm is handled efficiently through a one-time precomputa-
tion using DFS and memoization. The overall time complexity
of calculating the scores for all potential candidates is signifi-
cantly lower than the combinatorial complexity of exploring
all possible root sets.

C.4 Dealing with large graphs
The approach outlined in Appendix C.1 of selecting a pool of
the top ℓ candidates and exploring combinations of up to 𝑘𝑚𝑎𝑥

of them faces a major practical challenge for large, complex
graphs. If the pool size ℓ is too small, it may not contain
any combination of roots that yields a feasible solution under
tight resource constraints. Conversely, if ℓ is large enough to
likely contain a feasible set, the number of combinations to
test is

(
ℓ
𝑘

)
for each 𝑘 , which quickly becomes computationally

intractable.
To address this, we further refine our candidate pool selec-

tion approach to find high-quality solutions for large graphs.
Our method focuses on finding a viable starting point and
then iteratively refines it.

Stage 1: Find an initial feasible solution. Instead of com-
mitting to a fixed candidate pool size ℓ , this stage employs
an adaptive approach inspired by the Greedy Randomized
Adaptive Search Procedure (GRASP) [23].

1. Start small: The algorithm begins with a small initial
candidate pool size, ℓ .

2. Randomized selection: Rather than deterministically
picking the top ℓ nodes to use as the pool of root can-
didates P, we form a Restricted Candidate List (RCL)
of the top-scoring nodes (where the RCL size is a tun-
able parameter). The algorithm then randomly selects
candidates from this list to construct P. This random-
ization is key to avoiding getting stuck on a single,
high-scoring but ultimately infeasible set of candidates.

3. Feasibility check: The algorithm attempts to solve the
ILP for the entire selected candidate pool, 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

{𝑟𝐺 } ∪ P.
4. Increment and retry: If the ILP solver finds no fea-

sible solution, the algorithm increments the candidate
pool size ℓ and repeats the randomized selection and
feasibility check. This process continues until an ini-
tial, valid solution is found. This solution serves as the
starting point for the next stage.

This adaptive, randomized search ensures that we can find
a feasible, albeit likely suboptimal, solution without having
to guess a good initial pool size and composition (which is
very hard for large graphs).

Stage 2: Greedy refinement. Once an initial feasible solution
(𝑅𝑏𝑒𝑠𝑡) is found, the algorithm switches to a greedy local
search to improve it. This refinement process forgoes adding
new roots and instead focuses on intelligently pruning the
existing set to reduce cost.

1. Identify least valuable roots: The core of the greedy
strategy lies in how it prunes the current root set, 𝑅𝑏𝑒𝑠𝑡 .
It uses the pre-computed Downstream Impact Heuristic
(DIH) scores for all nodes in 𝑅𝑏𝑒𝑠𝑡 . A low DIH score
suggests that a node contributes less to resolving down-
stream resource pressure, making it a “less valuable”
root. The algorithm creates a list of removable roots
(all roots in 𝑅𝑏𝑒𝑠𝑡 except for the main graph root 𝑟𝐺),
sorted in ascending order of their DIH score.

2. Iterative removal: The algorithm enters a loop, at-
tempting to remove one root at a time from the sorted
list. For each candidate root 𝑟𝑟𝑒𝑚𝑜𝑣𝑒 in the list, it forms
a new, smaller root set 𝑅𝑡𝑒𝑚𝑝 = 𝑅𝑏𝑒𝑠𝑡 \ {𝑟𝑟𝑒𝑚𝑜𝑣𝑒 } and
solves the ILP for this new set.

3. Update on Improvement: If the ILP for 𝑅𝑡𝑒𝑚𝑝 yields
a feasible solution with a cost 𝐶𝑡𝑒𝑚𝑝 < 𝐶𝑏𝑒𝑠𝑡 , the re-
finement is successful. The algorithm updates its state:
𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑡𝑒𝑚𝑝 and 𝐶𝑏𝑒𝑠𝑡 ← 𝐶𝑡𝑒𝑚𝑝 . It then immedi-
ately restarts the refinement process from Step 1 with
the new, smaller, and more efficient root set.

4. Termination: If the algorithm completes a full pass
through the sorted list of removable roots without find-
ing any single removal that improves the cost, it con-
cludes that it has reached a local optimum. The refine-
ment process terminates and returns the current best
solution, 𝑅𝑏𝑒𝑠𝑡 .

19

SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea Yuxuan Zhang and Sebastian Angel

use libc::{c_char};
use std::ffi::{CStr, CString};

fn caller2c (input: String) -> String {
let input_cstr: CString = CString::new(&input[..])
.unwrap();

let input_c: *const c_char = input_cstr.as_ptr();
let output_c: *const c_char = dummy_c2callee(input_c);
let output: String = unsafe {
CStr::from_ptr(output_c).to_str().unwrap().to_owned()

};
output

}

Figure 12. Shim code for caller2c in Rust

At this point, we can use 𝑅𝑏𝑒𝑠𝑡 in Phase 2 of the algorithm
in Appendix C (Subgraph Construction) to produce the graph
assignments.

D LLVM pass to merge across languages
When merging functions written in different languages, our
approach largely follows the steps in Figure 5, with minor
modifications in steps ➌ and ➍.

In step ➌, the IR of both the caller and callee, along with
the shim functions, are merged into a single module. The
shim consists of two layers:

• Layer 1 (caller2c): Written in the caller’s language, it
has the same function type as invoke_func(). Inside
caller2c, arguments and return values are converted
from the caller’s string type to C’s char* and passed to
the call of dummy_c2callee. The caller2c example
is shown in Listing Figure 12.

• Layer 2 (c2callee): Written in the callee’s language, it
has the same function signature as dummy_c2callee. It
receives only char* arguments and return values. Inside
c2callee, these char* are converted into the callee’s
string type before being passed to dummy_callee, which
matches the modified callee function’s signature. (Note:
We still need to adjust the callee function’s interface to
conform to the local call’s convention before we replace
dummy_callee with it.) The c2callee example is
shown in Listing Figure 13.

In step ➍, three additional modifications are added on the
LLVM IR to convert the serverless function invocation into a
local call: First, the call to invoke_func in the caller func-
tion is replaced with a call to caller2c. Second, the call to
dummy_c2callee in caller2c is replaced with a call to
c2callee. Finally, the call to dummy_callee function
in c2callee is replaced with the call to the modified callee
function.

By using this shim-based approach, we effectively convert
string types between different languages, enabling seamless
cross-language function calls within the same address space.

import Foundation

func swiftStr2CCharPtr(_ swiftString: String)
-> UnsafePointer<CChar> {
// strdup allocates memory and copies the string
let cString = strdup(swiftString)
if cString == nil {

fatalError("Failed to allocate memory for the C string.")
}
return UnsafePointer<CChar>(cString!)

}

func cCharPtr2SwiftStr(_ cString: UnsafePointer<CChar>)
-> String {
return String(cString: cString)

}

func c2callee(_ inputC: UnsafePointer<CChar>)
-> UnsafePointer<CChar> {
let inputSwift = cCharPtr2SwiftStr(inputC)
let resultSwift = dummy_callee(inputSwift)
let outputC = swiftStr2CCharPtr(resultSwift)
return outputC

}

Figure 13. Shim code for c2callee in Swift

E Function Size
The table below gives statistics about the different function
binaries. For each workflow, it lists the number of functions
in the workflow, the size of the smallest, average, and max
size binary. It also provides the size of the merged binary
produced by Quilt. In all but one case, the merged binary is
smaller than the sum of the corresponding function binaries.

Workflow #fn Baseline (MB) Quilt (MB) change
min avg max

compose-post 11 0.57 1.16 3.6 5.1 60.0%
follow-with-uname 4 1.2 1.4 1.5 3.6 35.7%
read-home-timel. 2 1.6 1.65 1.7 3.6 9.1%
compose-review 15 1.2 2.0 2.0 4.0 86.7%
page-service 6 1.2 1.48 1.7 3.9 56.1%
read-user-review 2 1.5 1.6 1.7 3.5 -9.4%
search-handler 6 1.2 1.38 1.6 4.0 51.7%
reservation-handler 3 1.2 1.33 1.6 3.6 10.0%
nearby-cinema 2 1.2 1.45 1.7 2.8 3.4%

F Call Graphs

20

Quilt: Resource-aware Merging of Serverless Workflows SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

write-home
-timeline

social-graph-get
followers

compose-post

media-service

text-service

user-mention-
service

url-shorten
-service

write-user
-timeline

store-post
compose-creator

-with-userid

unique-id-service

compose-creator
-with-username

register-user-with-id

register-user social-graph
-insert-user

user-login

read-home
-timeline

read-user
-timeline

read-posts

get-user-id
social-graph
-unfollow

unfollow-with-uname

read-post

follow-with-uname

social-graph
-get-followees

social-graph
-follow

Figure 14. Call Graph of SocialNetwork from DeathStarBench

unique-id-service

upload-unique-id

compose-review

text-service

upload-text

upload-user-
with-username

upload-user-id

compose-review
-upload-movie-id

rating-service
upload-movie-id

upload-ratingcompose-
and-upload

store-review
upload-

movie-review

upload-
user-review

read-plot

page-service

read-cast-info
read-movie-info

read-movie
-reviews

read-user
-reviews

write-plot

read-reviews
register-user
-with-userid

login

register-userupdate-rating register-
movie-id

Figure 15. Call Graph of MovieReview from DeathStarBench

get-profiles

search-handler

check-availability
search-nearby

get-rates nearby-hotel

set-cinema

nearby-cinema

get-nearby-
points-cinema

set-restaurant

nearby-restaurant

get-nearby-
points-restaurant

set-museum

nearby-museum

get-nearby-
points-museum

reservation-
handlermake-

reservation check-user

recommendation
-handler

get-
recommendations

set-review

set-rate
set-capacityregister-user

set-hotel-point get-review

set-profile

Figure 16. Call Graph of HotelReservation from DeathStarBench

21

	Abstract
	1 Introduction
	1.1 Overview of Quilt

	2 Background and motivation
	2.1 How do prior works address invocation overheads?

	3 Profiling
	4 Deciding what to merge
	4.1 Problem statement
	4.2 Finding the optimal set of subgraphs
	4.3 A fast and good (but suboptimal) solution

	5 Merging
	5.1 Compilation pipeline
	5.2 Merging functions in the same language
	5.3 Merging functions in different languages
	5.4 Merging multiple functions
	5.5 Updating functions
	5.6 Unrepresentative profiling

	6 Implementation
	7 Evaluation
	7.1 Evaluation environment
	7.2 Evaluated systems and workloads
	7.3 Are there benefits to merging workflows?
	7.4 Should we merge entire workflows?
	7.5 How expensive is it to merge?
	7.6 What if the call graph edge values are wrong?

	8 Discussion
	References
	A Are fewer subgraphs always better?
	B Constraints for Optimal ILP
	B.1 Input Parameters
	B.2 Decision Variables
	B.3 Objective Function
	B.4 Constraints

	C Approximate Merge Decision Algorithm
	C.1 Downstream Impact Heuristic Score
	C.2 Effectiveness of the Downstream Impact Heuristic
	C.3 The Downstream Impact Heuristic is Fast
	C.4 Dealing with large graphs

	D LLVM pass to merge across languages
	E Function Size
	F Call Graphs

