Statement of Research Interests

Yuxuan Zhang

As we have entered the Post-Moore Era where transistor size is reaching its limit, single-core performance
can no longer be improved much. Although peripherals’ performance and capacity have been dramatically
increased and the concept of heterogeneous designs which allow the processor to offload part of its work to
accelerators for speeding up program’s execution have been proposed, the general purpose processor itself
can still be a bottleneck for application’s performance.

To address the inefficiency caused by processors, especially cache bottlenecks that remain despite decades
of hardware innovations, I build systems that leverage both hardware and software techniques to improve
application’s performance. In these systems, hardware monitors performance and provides feedback to soft-
ware, then software optimizes based on the feedback reported from hardware while applications are running.
My past research includes two projects: (1) Online COde Layout Optimizations (Ocolos) [6] [7] and (2)
Robust Profile-Guided Runtime Prefetch Generation (RPG?) [10]. The former has shown it is feasible to
apply profile-guided code layout optimization at runtime with low overhead. The latter shows that runtime
optimization can also be applied to data cache prefetching if the code layout is carefully tuned to support
on-stack replacement and continuous optimization. In this statement, I summarize my prior works, and
detail my future research plans.

1 Prior Research - Profile-Guided Code Layout Optimization at Runtime

Online COde Layout Optimizations (Ocolos): Prior research [1] has pointed out that the capacity of the
instruction-cache of server processors cannot handle the growth of today’s data center applications and their
growing instruction working set. Several profile-guided compiler-based approaches [2] [3] [5] have been
proposed to address the gap between the instruction cache capacity and the code size. However, they all
require halting the program to re-launch the optimized application. This is unacceptable for many services
which handle thousands of queries or tasks per second, and these queries or tasks may change rapidly
depending on how the inputs change. A newly optimized code layout may become stale after a relatively
short period of time. Then it becomes necessary to change the code of the running process again once the
system detects that the current code layout is not optimal for the incoming queries or tasks anymore.

To address this problem, I implemented Ocolos [6] [7], the first online code layout optimization system for
unmodified applications written in unmanaged languages like C and C++. Ocolos allows profile-guided
optimization to be performed on a running process, instead of being performed offline and requiring the
application to be re-launched. By running online, profile data is always relevant to the current execution and
always maps perfectly to the running code. Ocolos demonstrates how to achieve robust online code replace-
ment in complex multithreaded applications like MySQL and MongoDB, without requiring any application
changes. Our experiments show that OCOLOS can accelerate big-code applications such as MySQL by up
to 1.41x.

Robust Profile-Guided Runtime Prefetch Generation (RPG?): Data cache prefetching is a well-established
problem. Since current major server processors employ only simple hardware prefetchers, which fail to cap-
ture complex indirect access patterns, a number of static data prefetch compilers [8] [9] have been proposed.
However, as the data that needs to be prefetched depends on not only program structure, but also program
input and the microarchitecture, it is hard for static compiler-based prefetch insertion approaches to provide
a solution that can benefit to an application across all inputs. Moreover, depending on the input and the
microarchitecture, prefetch instructions can sometimes be harmful to performance. It is hard for developers
or compilers to know up-front if prefetching will help or hurt.

To make up for the shortcomings caused by static compiler-based prefetch insertion approaches, I designed
and implemented the RPG? system for online prefetch injection and tuning. RPG? profiles a running C/C++
program, injects prefetch instructions and then tunes those prefetches to maximize performance. RPG?
can provide a comparable speedup to the best profile-guided prefetching insertion compilers, but can also



respond when prefetching ends up being harmful and roll back to the original code — something that static
compilers cannot. In other words, RPG? makes prefetching a safer optimization by preserving its upsides,
and protecting programs from its downsides. According to our experimental results, RPG? can provide
speedup up to 2.15x in the case where prefetch can benefit to the performance. In static compiler-based
prefetch insertion approach’s worst case scenario where there is a 70% slowdown, the slowdown caused by
RPG? is only 7%.

2 Future Research Agenda

PGO-based Code Prefetching at Runtime: My previous work [6] has shown that the performance of big-
code applications is input-dependent. Hence, we need a system like Ocolos to dynamically tune the code
layout for different inputs in order to achieve the best performance at runtime. Ocolos’ runtime basic block
reordering and function reordering significantly improve processor’s front-end performance, because if fre-
quently accessed basic blocks and functions are reordered to be adjacent, capacity and conflict misses of
instruction cache caused by big-code applications will be reduced. However, reordering basic blocks and
functions fall short for reducing compulsory misses. To enable more online optimizations, it’s also necessary
for Ocolos to support runtime code prefetching, since it helps with reducing the compulsory misses.

Prior work of profile-guided code prefetch insertion approaches [2] [3] [4] tried to address the performance
degradation caused by instruction cache’s compulsory misses offline, but at the time I implemented Ocolos,
none of them can be adopted by Ocolos because of a lack of ISA support for code prefetch instructions. For
example, to increase both code prefetch coverage and accuracy, I-SPY [3] proposed the concept of conditional
prefetch. On their hardware simulator, a new code prefetch instruction Cprefetch was introduced to the
x86 instruction set. The Cprefetch instruction integrates the trace of predecessor basic blocks that has a
high probability of causing an instruction cache miss in a particular successor basic block. When Cprefetch
is executed at runtime, the processor examines whether the last 32 basic blocks collected from intel’s Last
Branch Records (LBR) contain the trace encoded in Cprefetch, and then decides whether code should be
prefetched. Of course, this Cprefetch instruction doesn’t exist in any actual processors.

The good news is that new instructions being rolled out soon by Intel with its Redwood Cove microarchitec-
ture will make software instruction prefetching possible. But with only the basic hardware code prefetching
instructions added to the x86 ISA, it is not enough to reproduce the functionality proposed by any of the
state of the art code prefetch solutions on real machines. So one of my future research goals is to seek an al-
ternative way that leverages Intel’s code prefetch instructions to implement I-SPY or other code prefetching
strategies on real processors, and then convert it to be online. For instance, I-SPY’s profiling, prefetch injec-
tion analysis and Cprefetch’s examination of whether the most recent 32 LBR samples contain the trace
that causes instruction cache miss can all be moved to the new system. With the information of prefetch
injection sites and traces that causes instruction cache misses from the profile, once the new system detects
any/none of the traces exists in the current LBR samples, it can dynamically insert/erase code prefetch in-
structions. Since runtime code replacement has additional overhead, it would be interesting to see how
much performance degradation will arise if the decisions of whether insert prefetch or not are made by the
new system before executing each possible prefetch spot at runtime. It would also be interesting to know
what the maximum performance improvement the new version of the new system can achieve if all runtime
optimizations (i.e., basic block reordering, function reordering and code prefetching) are turned on.

References

[1] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G. Wei, D. Brooks, “Profiling a
warehouse-scale computer,” 2015 ACM/IEEE 42nd Annual International Symposium on Computer Archi-
tecture (ISCA), Portland, OR, USA, 2015, pp. 158-169.

[2] G. A. Nayana, P. Nagendra, D. I. August, H. Cho, S. Kanev, C. Kozyrakis, T. Krishnamurthy, H. Litz, T.
Moseley, P. Ranganathan, “AsmDB: Understanding and Mitigating Front-End Stalls in Warehouse-Scale



Statement of Research Interests - Yuxuan Zhang 3

Computers,” 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA),
Phoenix, AZ, USA, 2019, pp. 462-473.

T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz and B. Kasikci, “I-SPY: Context-Driven Condi-
tional Instruction Prefetching with Coalescing,” 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Athens, Greece, 2020, pp. 146-159.

T. A. Khan , D. Zhang, A. Sriraman, ]. Devietti, G. Pokam, H. Litz, B.Kasikci, “Ripple: Profile-Guided
Instruction Cache Replacement for Data Center Applications,” 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), Valencia, Spain, 2021, pp. 734-747.

M. Panchenko, R. Auler, B. Nell and G. Ottoni, “BOLT: A Practical Binary Optimizer for Data Cen-
ters and Beyond,” 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
Washington, DC, USA, 2019 pp. 2-14.

Y. Zhang, T. A. Khan, G. Pokam, B. Kasikci, H. Litz and J. Devietti, “OCOLOS: Online COde Layout
OptimizationS,” 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 530-
545.

Y. Zhang, T. A. Khan, G. Pokam, B. Kasikci, H. Litz and J. Devietti, “Online Code Layout Optimizations
via OCOLOS,” in IEEE Micro, vol. 43, no. 4, pp. 71-79, “Top Picks From the 2022 Computer Architecture
Conferences”, July-Aug. 2023.

S.Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz. 2022, “APT-GET: profile-guided timely software
prefetching,” Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22), New
York, NY, USA, 747-764.

T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci. “Dmon: Efficient detection and correction of
data locality problems using selective profiling,” 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), pages 163-181. USENIX Association, July 2021.

[10] Y. Zhang, N. Sobotka, S. Park, S. Jamilan, T. A. Khan, B. Kasikci, G. Pokam, H. Litz, J. Devietti. “RPG2:

Robust Profile-Guided Runtime Prefetch Generation” In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS '24),
999-1013.



