OCOLOS: Online COde Layout OptimizationS

Yuxuan Zhang†, Tanvir Ahmed Khan†, Gilles Pokam‡, Baris Kasikci†, Heiner Litz§, Joseph Devietti†
†University of Pennsylvania ‡University of Michigan §Intel Corporation ◊University of California, Santa Cruz
∗{zyuxuan, devietti}@seas.upenn.edu ‡gilles.a.pokam@intel.com §hlitz@ucsc.edu

Abstract—The processor front-end has become an increasingly important bottleneck in recent years due to growing application code footprints, particularly in data centers. First-level instruction caches and branch prediction engines have not been able to keep up with this code growth, leading to more front-end stalls and lower Instructions Per Cycle (IPC). Profile-guided optimizations performed by compilers represent a promising approach, as they rearrange code to maximize instruction cache locality and branch prediction efficiency along a relatively small number of hot code paths. However, these optimizations require continuous profiling and rebuilding of applications to ensure that the code layout matches the collected profiles. If an application’s code is frequently updated, it becomes challenging to map profiling data from a previous version onto the latest version, leading to ignored profiling data and missed optimization opportunities.

In this paper, we propose OCOLOS, the first online code layout optimization system for unmodified applications written in unmanaged languages. OCOLOS allows profile-guided optimization to be performed on a running process, instead of being performed offline and requiring the application to be relaunched. By running online, profile data is always relevant to the current execution and always maps perfectly to the running code. OCOLOS demonstrates how to achieve robust online code replacement in complex multithreaded applications like MySQL and MongoDB, without requiring any application changes. Our experiments show that OCOLOS can accelerate MySQL by up to 1.41×, the Verilator hardware simulator by up to 2.20×, and a build of the Clang compiler by up to 1.14×.

I. INTRODUCTION

As the world demands ever more from software, code sizes have increased to keep up. Google, for example, reports annual growth of 30% in the instruction footprint of important internal workloads [6, 45]. This code growth has created bottlenecks in the front-end of the processor pipeline [50], as the sizes of front-end hardware resources close to the processor have been relatively static over time [52]. Figure 1 shows that, despite Moore’s Law, the per-core L1 instruction cache (L1i) capacity of server microarchitectures from Intel and AMD has remained effectively constant (literally so in Intel’s case) over the past 15 years, because the L1i is so latency-critical [23]. As we attempt to cram ever more code into a fixed-size L1i, strain on the processor front-end is inevitable. The inability to deliver instructions to the processor leads to front-end stalls that tank IPC and end-to-end application performance as even advanced techniques like out-of-order processing cannot hide these stalls [58].

To address front-end stalls, large software companies have turned to Profile-Guided Optimizations (PGO) from the compiler community that reorganize code within a binary to optimize the utilization of the limited L1i for the common-case control-flow paths (we describe these compiler optimizations in detail in Section II). Google’s AutoFDO [10] and Propeller [29], Meta’s BOLT [76, 77], and gcc’s and clang’s built-in PGO passes are popular examples of this approach. While these systems have seen successful deployment at scale, there exist three significant challenges.

First, the results of PGO are only as good as the profiling information that drives PGO’s optimization decisions [53, 108, 110]. PGO requires relevant, fresh profiling information to produce high-performance code layouts [72]. However, PGO is an offline optimization, applied either during compilation (AutoFDO, gcc, clang) or to a compiled binary (BOLT and Propeller), creating a fundamental lag between when profiling information is collected and when it is used to optimize the code layout [10]. If program inputs shift during this time, previous profiling information is rendered irrelevant or even harmful when it contradicts newer common-case behavior [69, 105]. Maintaining profiles for each input or program phase is prohibitive in terms of storage costs, so profiles are merged together to capture average-case behavior at the cost of input-specific optimization opportunities [104, 111].

Second, even if we have secured timely profiling information, if the program code itself changes then it is difficult to map the profiling information onto the new code [10]. By its nature, profiling information is captured at the machine code level, and

Many optimizations can be driven by profiling information, so the term “profile-guided optimization” is quite broad. In this paper, we use it to refer exclusively to profile-driven code layout optimizations.
even modest changes to the source code can lead to significant differences in machine code [36]. To make things worse, in large software organizations, code changes can arrive every few minutes for important applications [3]. Since we always need to deploy the latest version of an application, there is a constant challenge when applying PGO with profiling data collected from version k to the compilation of the latest version k'. Profiling data that cannot be mapped to k' is discarded, causing us to miss optimization opportunities [22].

The third key challenge with offline PGO approaches is that recording, storing, and accessing PGO profiles adds an operational burden to code deployment. In particular, for end-user mobile applications, managing profiles can itself be a non-trivial task [69, 90].

In this paper, we propose COLOS, a novel system for online profile-guided optimizations in unmanaged languages. COLOS performs code layout optimizations at run time, on a running process. By moving PGO from compile time to run time, we avoid the challenges listed previously. Profile information is always up-to-date with the current behavior the program is exhibiting. COLOS also supports continuous optimizations to keep up with input changes over time. In COLOS, profiling data always maps perfectly onto the code being optimized since we profile and optimize the currently-running process. There is no burden of profile management, as the profile is produced and then immediately consumed. Some managed language runtimes (e.g., Oracle HotSpot JVM [39] and Meta HHVM [73, 74]) support online code layout optimizations and achieve similar benefits. We are not aware, however, of any system before COLOS that brings the benefits of online PGO to unmanaged code written in languages like C/C++.

To realize the benefits of PGO in the online setting, COLOS builds on the BOLT [76, 77] offline PGO system, which takes a profile and a compiled binary as inputs and produces a new, optimized binary as the output. COLOS instead captures profiles during execution of a deployed, running application, uses BOLT to produce an optimized binary, extracts the code from that BOLTed binary, and patches the code in the running process. To avoid corrupting the process, code patching requires careful handling of the myriad code pointers in registers and throughout memory. COLOS takes a pragmatic approach that requires no changes to application code, which enables support for complex software like relational databases.

COLOS is different from other Dynamic Binary Instrumentation (DBI) frameworks like Intel Pin [64], DynamoRIO [8, 35], and Valgrind [71] in that COLOS 1) focuses on code replacement, instead of providing APIs for instrumentation, and 2) has a “1-time” cost model where major work is done only during code replacement and the program runs with native performance once the replacement is complete. Existing DBI frameworks would be unsuitable for our online PGO use-case because programs running under, say, Pin experience a non-trivial ongoing overhead to intercept control-flow transfers and maintain the code cache. The performance benefits of the improved code layout would, in practice, often be outweighed by these ongoing overheads. Instead, COLOS exacts a 1-time cost for code replacement which is readily amortized, along with a small amount of run-time instrumentation on function pointer creation (see Section IV-C).

For some short-running programs, even the 1-time cost of COLOS is too high to be effectively amortized at run time. To address this problem, we propose BOLT ACCELERATOR MODE (BAM), a technique that allows batch workloads consisting of a large collection of short-running processes, like large software builds, to benefit from COLOS. BAM works by profiling initial executions of a binary, generating an optimized binary with BOLT, and using that optimized binary in subsequent executions. BAM operates transparently to the workload, via LD_PRELOAD injection, allowing BAM to accelerate builds of the Clang compiler without any changes to Clang code or build scripts.

While in this paper we focus on using COLOS to enable online PGO, we envision COLOS also being applicable in a range of other cases such as performance optimization and security. We will open-source COLOS to facilitate this exploration.

In summary, this paper makes the following contributions:

- We describe the design of COLOS, the first online profile-guided code layout optimization tool for unmanaged code.
- We show how to perform online code replacement efficiently in unmodified, large-scale C/C++ programs.
- We evaluate COLOS on a series of big-code applications like MySQL and MongoDB, demonstrating speedups of up to 1.41× on MySQL.
- We evaluate a variant of COLOS targeted at batch workloads with many short-running processes, demonstrating a 1.14× speedup on a from-scratch Clang build.

II. BACKGROUND

In this section, we provide the necessary background of PGO passes implemented in tools like AutoFDO [10] and BOLT [76, 77], which are now the state of the art at all major cloud companies including Google and Meta.

A. Hardware Performance Profiling

Profile collection is the first step of all PGO workflows. There are two different methods of profile collection: 1) through compiler instrumentation of branch instructions (e.g., Clang and GCC), and 2) through hardware support (e.g., Intel’s Last Branch Record [56] and Processor Trace [55]). Due to the high overheads of compiler instrumentation [10], cloud providers generally leverage hardware profiling supporting [10, 13, 18, 67, 76, 77]. For instance, Intel’s LBR [56] facility, which dates back to the Netburst architecture (Pentium 4), is widely available at this point. When LBR tracing is enabled, the processor records the Program Counter (PC) and target of taken branches in a ring buffer. The recording overhead via LBR is negligible [43, 67] and software can then sample this ring buffer to learn the branching behavior of an application. The Linux perf utility

\footnote{2The LBR buffer in Skylake and newer cores has 32 entries.}
provides simple access to LBR sampling, including the ability to start and stop LBR recording of arbitrary running processes.

Each LBR sample represents a snippet of the program’s control flow. By aggregating these snippets, the approximate frequency of branch taken/not-taken paths through the code can be reconstructed. With these branch frequencies in hand, we can make intelligent decisions about optimizing the code layout as described below.

B. Basic Block Reordering

Basic block reordering is typically the most impactful PGO code transformation [76]. Whenever programs contain if statements, the compiler must decide how to place the resulting basic blocks into a linear order in memory [80]. Without profiling information, the compiler must use some heuristics to decide on a layout based on static code properties [7, 9, 15, 44, 66, 85, 107, 112], often leading to sub-optimal results [69].

The ideal layout places the common-case blocks consecutively, maximizing L1i and instruction Translation Lookaside Buffer (iTLB) locality while reducing pressure on the branch prediction mechanism [72]. In particular, by linearizing the code, the number of taken branches is minimized, reducing the pressure on the Branch Target Buffer (BTB) which only stores information about taken branches [40, 41, 48, 98]. Consider the example program in Figure 2. Assuming both conditions are typically true, shaded basic blocks constitute the common-case execution. A naive layout which places the blocks from each if statement together results in two taken branches (shown by arrows). The optimal layout, however, avoids any taken branches, and results in better performance.

```plaintext
if (cond1) { // A
    // B
} else { // C
    // E
}

if (cond2) { // D
    // F
} else { // G
    // F
}
```

![Fig. 2: Example program which benefits from PGO](image)

C. Function Reordering

Function reordering optimizes the linear order of functions within a binary to take advantage of caller-callee relationships. This optimization first uses profiling information to construct a call graph and annotates edges with the frequency of calls. The classic Pettis-Hansen (PH) algorithm [80] puts functions next to each other if they call or are called by each other frequently. While the PH algorithm uses a greedy approach to place the most frequently-invoked functions adjacent to each other, it makes no distinction between callers and callees.

The C³ [75] algorithm improves upon Pettis-Hansen by placing callers before callees, which is especially helpful in asymmetric calling relationships where A calls B frequently but B never calls A. This allows C³ to move the target of a function call closer to the call instruction itself, improving L1i and iTLB locality beyond what PH can provide.

Sometimes PGO passes will incorporate additional optimizations, such as function inlining or peephole optimizations. However, nearly all of the performance benefit of PGO passes comes from basic block reordering and function reordering [76].

D. BOLT: Binary Optimization & Layout Tool

BOLT [76, 77] is a post-link optimization tool built in the LLVM framework, which operates on compiled binaries. The BOLT workflow begins with gathering profiling information. Though BOLT can use a variety of profile formats, LBR samples are preferred. Armed with the profile and the original, non-BOLTed binary, BOLT compiles the machine code into LLVM’s low-level Machine Intermediate Representation (MIR) format, not to be confused with the more commonplace LLVM IR. BOLT performs a series of optimizations, including basic block reordering and function reordering, at the MIR level before performing code generation to emit a new, BOLTed binary.

The layout of a BOLTed binary is unconventional in a few ways. First, cold functions are left in-place in the original .text section of the binary, which is renamed to the bolt.org.text section. These cold functions are subject to small peephole optimizations but their starting addresses do not change and their basic blocks are not reordered because there was insufficient profiling information to justify stronger optimizations. The hot functions, however, are heavily optimized by BOLT (via basic block and function reordering) and are moved to a new .text section at a higher address range. Additionally, BOLT may perform hot-cold code splitting, where the cold basic blocks of a hot function \(f \) are not stored contiguous with the hot blocks for \(f \), but are instead exiled to another region of the binary with other cold blocks from other hot functions. Functions that are entirely cold are not worth splitting in this way, and have their code stored contiguously in the bolt.org.text section.

III. CHALLENGES

A well-known and intuitive challenge with offline profiling-based optimizations like conventional PGO is ensuring that the gathered profile data is of high quality [11, 53, 54, 106]. Profiling with one program input and then running on a different input can lead to many sub-optimal optimization decisions [2, 51]. We validate this effect experimentally in Section III-A.

OCOLOS offers a solution to offline PGO’s input sensitivity: since OCOLOS profiles and optimizes a running process, the profile data is always for the current binary and the current inputs. However, performing code replacement at run time introduces other challenges. Chief among them is that changing code can break any explicit or implicit code pointers (pointers to other instructions, not data) that referenced the changed code. In Section III-B, we catalog the myriad sources of code...
pointers in a running process, to better motivate the design of

OCOLOS in Section IV which can update or preserve these code pointers as necessary.

A. Input Sensitivity

Figure 3 quantifies the sensitivity of BOLT's performance to the quality of its profile data. The bars show along the x-axis the throughput of a BOLTed MySQL binary running the read only input from Sysbench [1]. The y-axis lists the Sysbench input used to provide profile data to BOLT. Thus, the bottom bar shows the performance when profiling the insert input, BOLTing the binary, and then running with the read only input. For reference, the dashed line shows the performance of the original MySQL binary without BOLT optimizations. While BOLT improves performance regardless of the training input used, the worst profile (insert) is 21% slower than the best profile (read only). Aggregating all profiling inputs (the bar labeled all) experiences some destructive interference between profiles and is about 8% slower than the best profile. Because OCOLOS (shown with the solid line) runs online instead of ahead of time, it always profiles the current input, and achieves high performance comparable to the best profile.

![Fig. 3: Performance achieved when running MySQL with the Sysbench read only input, using BOLT to produce a binary from the given profiling input or, with the all bar, from profiles of all inputs combined.](image)

In the next section, we discuss how OCOLOS overcomes these challenges by retaining the original code within a process, adding optimized code at a new location, and patching up as many code pointers as possible to steer execution towards the optimized code in the common case.

IV. OCOLOS

In Figure 4a, we show a high-level overview of the steps OCOLOS performs to optimize the code of a target process at run time. First, we gather profiling information from the target process 0, then build the BOLTed binary 0, pause the target process 0, inject code 0, update pointers to refer to the injected code 0, and finally resume the process 0. In this section, we assume the presence of the BOLTed binary and focus on the key components of OCOLOS’s online code replacement mechanism: Steps 0-0. Later, in Section V, we discuss Steps 0 and 0, which are conceptually simpler as they leverage existing tools like Linux’s perl utility for performance profiling and BOLT. Note that Steps 0 and 0, which consume the most time, are done concurrently in the background while

3 A virtual function/method table (v-table) is used to implement dynamic dispatch or virtual functions in object-oriented languages. The table itself stores function pointers to the methods of a class.
the target process continues to run. Though operations like running BOLT are CPU-intensive, they compete for cycles with the target process for only a limited time. Steps 3-5 are done synchronously while the target process is paused.

To better describe key operations within OCOLOS, we first describe the important regions of the address space of the target process, shown in the left part of Figure 4b. The code from the original binary we refer to as C0, which consists of 3 functions a0, b0, and c0. A v-table contains a pointer to b0. Finally, each thread’s stack is also important as it contains addresses of currently-executing functions. In Figure 4b, c0 is on the call stack.

OCOLOS takes as input an **optimized binary**, with modified code for functions in C1 or code for entirely new functions. While OCOLOS’s code replacement ultimately requires a short stop-the-world period (Section IV-B) to modify code and update code pointers, OCOLOS performs some bookkeeping in advance. In particular, OCOLOS parses the original binary offline to identify the locations of all direct call instructions. OCOLOS patches these calls at run time, but identifying the call sites in advance significantly shortens the stop-the-world period. OCOLOS leverages the Linux ptrace API, which allows one process (often a debugger like gdb) to control and inspect another process. OCOLOS uses ptrace to stop the target process and to inspect and adjust its register state.

A. Adding Code

As we describe in Section III-B, finding and updating all code pointers is fraught with corner cases. This leads to the first principle guiding OCOLOS’s design:

Design Principle #1: preserve addresses of C0 instructions

To enable significant performance gains by optimizing both the function-level and basic block layout, while preserving correctness, we design the following technique. Instead of updating the code of a function in place, OCOLOS injects a new version of the code C1 into the address space while leaving the original code intact (see Figure 4b). OCOLOS then changes a subset of code pointers within C0 to redirect execution to the C1 code. Remaining code pointers are not perturbed and continue to point to C0 code. This approach can handle thorny cases like setjmp/longjmp where a target instruction (not function) address has been saved on the heap or stack at run time.

B. Updating Code Pointers

When patching code pointers to make the C1 code reachable, OCOLOS follows our second design principle:

Design Principle #2: run C1 code in the common case

OCOLOS executes code from C0 instead of C1 occasionally to ensure correctness. However, the more frequently OCOLOS executes code from C0, the more it reduces the potential performance gains C1 can provide. Therefore, we seek to make C1 the common case. Other OCOLOS use-cases such as profiling are likely to also be amenable to this trade-off. For instance, if we need to count function invocations then we can instrument only the C1 code, ignoring the rare invocations of the old C0 version of a function. For security or debugging use-cases, however, it may be necessary to redirect all invocations of C0 functions to their C1 counterparts instead, e.g., via trampoline instructions [16] at the start of C0 functions and at call sites within them.

Since our goal for the current version of OCOLOS is minimizing (but not eliminating) time spent in C0, OCOLOS updates as many code pointers to refer to C1 as it is worthwhile to update. Note first of all that hot code gets optimized by BOLT and resides in C1. Direct calls in C1 will already refer to C1 (e.g., c1 calls b1) and do not require updating.

Figure 4b illustrates changes OCOLOS makes. We update function pointers in v-tables and direct calls in C0 for functions on the call stack (like c0). Recall that these C0 changes preserve instruction addresses, honoring our first design principle. We found that, in practice, updating direct calls in all functions (i.e., including those, like a0, not on the stack) does not improve performance – because functions like a0 are cold – though it does slow code replacement.

We could additionally seek out function pointers in registers and memory, though doing so would require expensive always-on run-time instrumentation to track their propagation throughout the program’s execution. This tracking would violate OCOLOS’s “fixed-costs only” cost model:

Design Principle #3: code replacement can incur fixed costs, but must avoid all possible recurring costs
Our experiments show that leaving these remaining function pointers (which our workloads do contain) pointing to C_0 code is fine, since C_0 code does not execute very long before it encounters a direct call or a virtual function call which steers execution back to C_1.

C. Continuous Optimization

A natural use-case for OCOLOS is to perform continuous optimization, whereby OCOLOS can replace C_1 with C_2, and C_i with C_{i+1} more generally. These subsequent code versions C_i can be generated by periodic re-profiling of the target process, to account for program phases, daily patterns in workload behavior like working versus at-home hours, and so on. OCOLOS can perform continuous optimization largely through the same code replacement algorithm described above, though functions on the stack and function pointers require deliberate handling as explained below.

The key challenge in continuous optimization is the need to replace code, instead of just adding new code elsewhere in the address space. If we continuously add code versions without removing old versions, the code linearly grows over time, wasting DRAM and hurting front-end performance. To address this challenge, we introduce a garbage collection mechanism for removing dead code. We define dead code as code that can no longer be reached via any code pointers and hence is safe to be removed.

Instead of waiting for code version C_i to naturally become unreachable, as in conventional garbage collection, we can proactively update code pointers to enforce the unreachability of C_i. OCOLOS patches v-tables, direct calls from C_0, return addresses on the stack, and threads’ PCs to refer to the incoming C_{i+1} code instead, as described in Section IV-B and illustrated in Figure 4c.

1) Return addresses: Code pointers in return addresses and in threads’ PCs may reference C_i, so OCOLOS must update these references to point to C_{i+1}. To update these references, OCOLOS first crawls the stack of each thread via libunwind to find all return addresses. OCOLOS examines RIP for each thread via ptrace. Collectively, this examination provides OCOLOS with the set of stack-live functions that are currently being executed. If any stack-live function is in C_i (such as b_i in Figure 4c), OCOLOS must copy its code to C_{i+1}. While there may be an optimized version b_{i+1} in C_{i+1}, it is challenging to update the return address to refer to b_{i+1} because, in general, the optimizations applied to produce b_{i+1} can have a significant impact on the number and order of instructions within a function.

Thus, OCOLOS makes a copy of b_i in C_{i+1}, which we call b_{i+1} to distinguish it from the more-optimized version b_{i+1}. b_{i+1} may need to have a different starting address than b_i, so OCOLOS updates PC-relative addressing within b_{i+1} to accommodate its new location. OCOLOS must also update the return address to refer to the appropriate instruction within b_{i+1}, but OCOLOS can treat the original return address into b_i as an offset from b_i’s starting address, and then use this offset into b_{i+1} to compute the new return address.

While copying b_i to b_{i+1} is a key part of enabling continuous optimization, it does not improve performance of the currently-running call to b_i since the code is the same. However, subsequent calls are likely to reach b_{i+1} instead via other code pointers, like the v-table in Figure 4c.

2) Function pointers: Apart from return addresses, function pointers may also point to C_i. At any time during execution, programs can create function pointers that may exist on the stack, heap, or in registers and point to a function in C_i. Instead of trying to track down and update these pointers while moving from C_i to C_{i+1}, OCOLOS enforces a simpler invariant that a program cannot create function pointers to C_i code in the first place – rather, function pointers must always refer to C_0. This allows function pointers to propagate freely throughout the program without the risk that they will be broken during code replacement.

OCOLOS enforces this invariant via a simple LLVM compiler pass that instruments function pointer creation sites with a callback function: void* wrapFuncPtrCreation(void*)

This function takes as its argument the function pointer being created (which may reference C_i code), and returns the value that the program will actually use – a pointer to the corresponding C_0 function instead. OCOLOS maintains a map from C_i to C_0 addresses to enable this translation. If OCOLOS has not yet replaced any code, or the function pointer being created does not reference C_i (e.g., it references library code), wrapFuncPtrCreation simply acts as the identity function.

Once a function pointer is created, it can freely propagate through registers and memory without any instrumentation - intervention is required only on function pointer creation. This instrumentation has a negligible cost: MySQL running the read_only input creates just 45 function pointers per millisecond on average. While we have not found the need to implement it for our workloads, calls to setjmp could be similarly redirected to C_0.

Having avoided function pointers to C_i, OCOLOS is able to update all other references to C_i code to refer to the incoming C_{i+1} code instead. Thus, OCOLOS can safely overwrite C_i code.

Due to technical limitations in the current version of BOLT, BOLT assumes the presence of a single .text code section and refuses to run on a BOLTed binary. Unfortunately, this prevents us from evaluating continuous optimization because our profiling data will refer to C_i code, and we need BOLT to run optimizations on C_i to produce C_{i+1}. We plan to add this feature to BOLT in the future.

D. Limitations

OCOLOS currently does not support jump tables, as they rely on compile-time constants to compute the jump target, and hence OCOLOS does not update these constants during code replacement yet. Thus, OCOLOS currently requires that a binary be compiled with the -no-jump-tables flag. The binaries for BOLT and the non-PGO baseline, however, can include jump tables. This jump table restriction is not fundamental to OCOLOS’s approach. With a little extra support from BOLT to

535
identify these constants within the optimized binary, OCOLOS can extract and update them as part of code replacement.

OCOLOS requires a pause time during code replacement, during which the target process cannot respond to incoming requests or do other useful work. This may hurt application performance, especially in terms of tail latency. There is scope to reduce the latency of OCOLOS’s code replacement: it requires a few MiB of scattered writes throughout the address space, all of which are currently done sequentially. If OCOLOS, say, updated v-tables in parallel with patching direct calls that should reduce the end-to-end replacement time further.

An additional approach to preserving tail latency during code replacement is to leverage techniques proposed for mitigating the effects of garbage collection pauses in distributed systems [82, 103]. If the system includes a load-balancing tier, as many modern web services do, then the load balancer can be made aware of application pauses (like major garbage collections, or OCOLOS code replacement) and can route traffic to other nodes temporarily. Because code optimizations are explicitly triggered by the operator, pause times are well known and can be scheduled accordingly.

OCOLOS requires that the functionality and ABI of C_0 is unchanged with respect to C_0, so that a function f_0 in C_0 has equivalent application semantics to a function f_1 in C_1. f_1 can, however, vary in non-semantic ways, such as having extra instrumentation or different performance.

Global variables cannot change location in OCOLOS, since C_0 code often hard-codes a global variable’s original location via RIP-relative addressing. C_1 code thus needs to reference those same global variables.

V. IMPLEMENTATION

In this section, we discuss some of OCOLOS’s implementation issues, including OCOLOS’s methodology to profile running processes, steps to run BOLT, and mechanism to transform code. Finally, we describe OCOLOS’s BAM mode for accelerating batch workloads such as software builds.

Profiling. As Figure 4a shows, OCOLOS’s first step is to profile the target process, to determine whether it suffers from sufficient front-end stalls to merit OCOLOS’s optimizations. OCOLOS uses the standard Linux `perf` utility to record hardware performance counters for this purpose. `perf` can attach to an already-running process, allowing OCOLOS to be deployed on a new process or an existing one.

OCOLOS adopts a 2-stage approach for profiling. The first stage follows the methodology proposed in DMon [49], which itself is built on Intel’s TopDown microarchitectural bottleneck analysis [109]. Note that in many data centers, systems such as GWP [89] already continuously profile all applications in the fleet. We have not integrated this analysis into OCOLOS yet since it is not the primary focus of our work, but we perform measurements to validate the feasibility of this approach in Section VI-C4.

If this first-stage exploration reveals significant time spent in the processor front-end, we continue with the second profiling stage. Here we use `perf` to record the hot control-flow paths of the target process via Intel’s LBR mechanism (Section II-A). We feed this information into the BOLT optimizer, as discussed next.

Running BOLT. We provide a quick summary of how BOLT operates here to keep this paper self-contained. More details can be found in the BOLT papers [76, 77].

First, we use the `perf2bolt` utility to extract the LBR information recorded by `perf` into an internal format that BOLT can consume more easily. Armed with the extracted LBR information and the binary corresponding to the target process, BOLT runs a series of optimization passes (most notably basic-block and function reordering, see Section II) to produce a new, optimized binary.

Efficient Code Copying. To provide direct copying of code from the optimized binary into the target process, we launch the target process with an LD_PRELOAD library. LD_PRELOAD is a Linux feature that allows a user-specified shared library to be loaded, alongside a program’s required shared libraries, when a process is launched. We use LD_PRELOAD to add some functions for code replacement into the address space of the target process. We then use `ptrace` to transfer control to our code, which reads in the optimized binary and copies its relevant contents into place. While `ptrace` can also perform memory copies into the target process, they are prohibitively slow since each copy requires a system call and several context switches. Performing this memory copy from within the target process is much more efficient and helps minimize the stop-the-world time.

A. BAM: Batch Accelerator Mode

For programs with short running times, OCOLOS’s fixed optimization costs cannot be effectively amortized. If these programs are executed frequently, as is common in data centers, it may still be worthwhile to optimize them. To address this problem, we have developed an alternative deployment mode for OCOLOS called BATCH ACCELERATOR MODE or BAM. As the name implies, BAM is focused on batch workloads where the same binary is invoked repeatedly. Early invocations of the binary can be profiled and fed into BOLT, so that subsequent invocations can use the BOLTed binary instead and see improved performance. BAM performs its optimization online as the batch workload runs, so it does not suffer from stale profiles, stale binary mapping issues, or require any profile management – all of which can hinder the use of offline PGO systems like BOLT.

BAM is a Linux shared library that is attached to a command, e.g., with LD_PRELOAD=bam.so make. BAM additionally needs to be told, via a configuration file, the binary to optimize. The BAM library makes use of another LD_PRELOAD feature which is transparent interception of calls to functions in any shared library. In particular, BAM intercepts `libc’s `exec*` calls and, if it finds an invocation of the target binary, adjusts the `exec` arguments to launch the binary with `perf`’s profiling enabled. BAM also attaches its shared library to child processes to find invocations of the target binary no matter where they occur in the process tree.
Once BAM has collected a (configurable) number of profiles of the target binary’s execution, it runs BOLT in a background process to produce the BOLTed binary. Once the BOLTed binary is available, BAM rewrites exec calls to use the BOLTed binary instead of the original binary, leading to an automatic performance boost for the remainder of the batch workload.

Similarly to OCOLOS’s single-process mode (Section IV), BAM automatically profiles a workload as it runs, avoiding the challenges of state profiling data and storing and retrieving profiles at scale. BAM’s highly-compatible LD_PRELOAD-based design is also similar in spirit to OCOLOS, in that no application changes are required to use BAM. In the make example above, no changes are required to the Makefile, application source code, make program, or the compiler toolchain.

One unique feature of BAM compared to OCOLOS is that BAM does not replace the code of a running process; it requires instead a subsequent exec call to allow the optimized binary to run. There is thus no stop-the-world component to BAM, and the overhead of switching from the original binary to the optimized one is essentially zero.

We see BAM being especially useful for accelerating Continuous Integration (CI) builds of large software projects. These CI builds are always done from scratch to ensure the software builds correctly on a fresh system [14]. So long as the software build is long enough for BAM to obtain useful profiling and run BOLT, BAM can transparently accelerate compiler invocations for the latter part of the build. BAM is complementary to build optimization techniques like distributed build caches [19, 20, 30, 37, 83, 84]. While a build cache can avoid some compiler invocations, BAM accelerates those compiler invocations that remain. BAM is also simpler to deploy than a build cache as BAM does not need any remote web services to be provisioned – BAM is purely local to each build.

VI. Evaluation

In our evaluation of OCOLOS, we set out to demonstrate that OCOLOS can provide significant performance improvements for programs that suffer from processor front-end bottlenecks. To demonstrate OCOLOS’s robustness, we evaluate it across a range of benchmarks, from complex, multithreaded programs such as the MySQL relational database to compute-bound, single-threaded workloads like the Verilator chip simulator and batch workloads like building the Clang compiler.

A. Experimental Setup

We run our experiments on a 2-socket Intel Broadwell Xeon E5-2620v4 server with 8 cores and 16 threads per socket (16 cores and 32 threads total) running at 2.1GHz. Each core has a 64-entry iTLB, a 1536-entry L2 TLB, a 32KiB L1i, a 32KiB L1d, a 256KiB L2 cache, and access to a shared 20MiB L3 cache and 128 GiB of RAM. The server runs Linux version 4.18. We use commit 88c70afe of the Lightning BOLT system [77] from its GitHub repository [21].

For our benchmarks, we use MySQL version 8.0.28, driven by inputs from Sysbench version 1.1.0-ead2689. We use MongoDB version 6.0.0-alpha-655-gea6cea6, driven by inputs from YCSB. We use Memcached version 1.6.12, driven by inputs from memaslap version 1.0. For MongoDB and Memcached the input names show the mix of operations, e.g. read95 insert5 means 95% of operations are reads and the other 5% are inserts. We use Verilator version 3.904, simulating an in-order rv64imafdc RISC-V single-core processor generated from RocketChip [5], with the processor running a set of RISC-V benchmarks [91]. All benchmarks are compiled with their default optimization level: -O3 for MySQL and Verilator, and -O2 for MongoDB and Memcached. We measure Verilator’s performance as the throughput of iterations of the main Dhrystone loop or iterations over the input array for median and vadd. We evaluate BAM on a build of Clang version 14.0.

All performance measurements, unless otherwise noted, show steady-state performance. For OCOLOS, we measure performance after code replacement is complete, except in Figure 7 where we show MySQL’s performance before, during, and after code replacement. OCOLOS and BOLT results are based on 60 seconds of profiling unless otherwise noted. Unless otherwise noted, we show averages of 5 runs with error bars indicating the standard deviation.

B. Performance and Characterization

Figure 5 shows the throughput improvement OCOLOS provides across our set of benchmarks. We compare OCOLOS to four baselines. Original is the performance of the original binary, compiled with only static optimizations (nothing profile-guided). BOLT oracle input is the performance offline BOLT provides when profiling and running the same input; PGO oracle input uses the same profiling file as BOLT oracle input but feeds it to clang’s builtin PGO pass [62]. Finally, BOLT average-case input is the performance offline BOLT achieves when aggregating profiles from all inputs and then running on the input shown on the y-axis. We show throughput normalized to original.

For our benchmarks, we use MySQL version 8.0.28, driven by inputs from Sysbench version 1.1.0-ead2689. We use MongoDB version 6.0.0-alpha-655-gea6cea6, driven by inputs from YCSB. We use Memcached version 1.6.12, driven by inputs from memaslap version 1.0. For MongoDB and Memcached the input names show the mix of operations, e.g. read95 insert5 means 95% of operations are reads and the other 5% are inserts. We use Verilator version 3.904, simulating an in-order rv64imafdc RISC-V single-core processor generated from RocketChip [5], with the processor running a set of RISC-V benchmarks [91]. All benchmarks are compiled with their default optimization level: -O3 for MySQL and Verilator, and -O2 for MongoDB and Memcached. We measure Verilator’s performance as the throughput of iterations of the main Dhrystone loop or iterations over the input array for median and vadd. We evaluate BAM on a build of Clang version 14.0.

All performance measurements, unless otherwise noted, show steady-state performance. For OCOLOS, we measure performance after code replacement is complete, except in Figure 7 where we show MySQL’s performance before, during, and after code replacement. OCOLOS and BOLT results are based on 60 seconds of profiling unless otherwise noted. Unless otherwise noted, we show averages of 5 runs with error bars indicating the standard deviation.

B. Performance and Characterization

Figure 5 shows the throughput improvement OCOLOS provides across our set of benchmarks. We compare OCOLOS to four baselines. Original is the performance of the original binary, compiled with only static optimizations (nothing profile-guided). BOLT oracle input is the performance offline BOLT provides when profiling and running the same input; PGO oracle input uses the same profiling file as BOLT oracle input but feeds it to clang’s builtin PGO pass [62]. Finally, BOLT average-case input is the performance offline BOLT achieves when aggregating profiles from all inputs and then running on the input shown on the y-axis. We show throughput normalized to original.

Figure 5 shows that OCOLOS uniformly improves performance over the original binary, by up to 1.41× on MySQL read only, 1.29× on MongoDB read update, 1.05× on Memcached and 2.20× on Verilator. Clang’s PGO generally falls short of BOLT, similar to the results from the BOLT paper [76] though our benchmarks are different, likely due to the challenges of mapping PCs back to the source code [36]. Aggregating profiling information across inputs is worse than using just the oracle profile of the input being run, as different inputs tend to exhibit contradictory control-flow biases that cancel each other out.

The results for BOLT oracle input represent an upper bound for OCOLOS’s performance, since BOLT has access to the oracle profiling data and ensures that all code pointers refer to optimized code, not just a judicious subset of them as with OCOLOS (Section IV-B). In some cases like MySQL delete and write only, use of code pointers that continue to refer to unOptimized C code results in a non-trivial performance gap (18 and 13 percentage points, respectively).
Fig. 5: Performance of OCOLOS (light blue bars) compared to BOLT using an oracle profile of the input being run (dark blue bars), Clang PGO using the same oracle profile (purple bars) and BOLT using an average-case profiling input aggregated from all inputs (pink bars). All bars are normalized to original non-PGO binaries (white bars).

However, on average OCOLOS is close to the BOLT oracle’s performance with a slowdown of just 4.6 points. Compared to offline BOLT with an average-case profile, OCOLOS is 8.9 points faster on average. This shows that OCOLOS’s efficient design enables dynamic code optimizations with almost the same performance gains as PGO while providing additional benefits such as guaranteeing the accuracy of profiling information and easy mapping to the target binary, and a simple deployment model that avoids the need for profiles to be stored and queried.

MongoDB scan95 insert5 is an odd case where conventional static compilation outperforms all of the profile-guided techniques (e.g., OCOLOS is 14% slower than original). To understand this behavior better, we applied Intel’s TopDown [109] performance measurement methodology which can identify the root microarchitectural cause of low IPC. TopDown classifies pipeline slots in each cycle to one of four top-level cases: Retiring (useful work), Front-End Bound (L1i, iTLB, and decoder bottlenecks), Back-End Bound (L1d or functional unit bottlenecks) or Bad Speculation (branch or memory aliasing mispredictions). With scan95 insert5, in all of the BOLT-based configurations (OCOLOS, BOLT oracle and BOLT average-case) the workload shifts from being front-end bound to back-end bound, with many memory accesses in particular stalled waiting for DRAM, suggesting that poor memory controller scheduling may be the root cause of the slowdown. The PGO version of scan95 insert5 has very similar TopDown metrics to original, so the cause of its slowdown is unclear.

Table I shows characterization data for our benchmarks, such as code size metrics, the average number (across inputs) of functions that are reordered by BOLT, on the call stack when code replacement occurs, and direct call sites that are patched. We also report memory consumption in terms of maximum resident set size, which is the peak amount of physical memory allocated to a process, when running the original binary, BOLT, and OCOLOS on MySQL oltp_read_only, mongodb read_update, Memcached set10 get90, and Verilator dhrystone. OCOLOS requires a modest amount of extra memory, only 208 MiB for mongodb and much less for other benchmarks. OCOLOS’s memory consumption is affected primarily by binary size, and does not scale up with larger or longer-running inputs. Note also that OCOLOS’s memory consumption is not an ongoing cost, but is incurred during code replacement and can be deallocated afterwards.

OCOLOS’s storage requirements are under 200 MiB for each benchmark, chiefly for profiling data and the optimized binary, which does not produce a significant amount of disk I/O. Note that these files are also transient: after the optimized binary is produced they can be deleted.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>MySQL</th>
<th>Mongo</th>
<th>Mem$</th>
<th>Verilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>functions</td>
<td>33,170</td>
<td>69,807</td>
<td>374</td>
<td>406</td>
</tr>
<tr>
<td>v-tables</td>
<td>3,812</td>
<td>6,165</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>.text section (MiB)</td>
<td>24.6</td>
<td>50.0</td>
<td>0.142</td>
<td>2.3</td>
</tr>
<tr>
<td>avg funcs reordered</td>
<td>963.6</td>
<td>2,364.2</td>
<td>74.2</td>
<td>83.2</td>
</tr>
<tr>
<td>avg funcs on stack</td>
<td>79</td>
<td>100.6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>avg call sites changed</td>
<td>31,677.2</td>
<td>30,9297.8</td>
<td>496.6</td>
<td>251.2</td>
</tr>
<tr>
<td>max RSS (MiB)</td>
<td>397.4</td>
<td>1434.4</td>
<td>67.8</td>
<td>263.4</td>
</tr>
</tbody>
</table>

Table I: Benchmark characterization data

C. MySQL Case Study

Next we present an in-depth case study of MySQL, using it to illustrate different aspects of OCOLOS’s performance. We focus on MySQL because it is a complex workload and it has the widest variety of inputs among our benchmarks.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 26,2024 at 21:53:14 UTC from IEEE Xplore. Restrictions apply.
To see a small, concrete example of how OCOLOS can improve performance, we used the perf report and perf annotate utilities to examine the distribution of L1i misses in an execution of MySQL oltp_read_only. Under both BOLT with average-case input and Clang PGO, the MYSQLparse function is a common source of L1i misses - with BOLT average-case it actually has the most L1i misses of any function. MYSQLparse is auto-generated by Bison as the main parsing function for SQL queries, with over 176 KiB of binary code. perf reports frequent L1i misses in basic blocks dealing with backtracking and checking for additional tokens. It makes sense that the average-case input has a difficult time, as it is unable to specialize the parser code for the current query mix and oltp_read_only has only select queries. It is less clear why PGO performs poorly since it has the oracle profile, but it is likely due to problems mapping low-level PCs back to source code and LLVM IR. With both OCOLOS and BOLT oracle, MYSQLparse does not even appear on perf’s radar as no L1i misses are sampled within it.

Fig. 6: The impact of profile duration on speedup for MySQL read_only

1) Profiling Duration: The amount of time that OCOLOS spends gathering profile information is configurable. While we use a default of 60 seconds for our current experiments, OCOLOS can still perform well with significantly less profiling information. Figure 6 shows the speedup over the original binary when varying the duration of profiling. The green squares show OCOLOS, and the blue triangles show BOLT to represent how well offline BOLT can optimize when given the same profiling information as OCOLOS. BOLT again provides a ceiling on OCOLOS’s expected performance. Figure 6 illustrates that profiling for at least 1 second offers a good absolute speedup over the original binary and also achieves most of the benefits that offline BOLT does. Below 100 milliseconds, profile quality suffers significantly for both OCOLOS and BOLT.

2) Code Replacement Costs: To better understand the performance impact of OCOLOS’s code replacement mechanism, we performed an experiment with MySQL read_only with Sysbench reporting the client’s transaction throughput every second. Figure 7 shows the results. The first 20 seconds (region 1 of the graph) are a warm-up period, showing the performance of the original binary at around 4,200 transactions per second (tps). After this, perf profiling begins collecting LBR samples (region 2), reducing throughput to about 3,600 tps. In region 3, perf2bolt runs 4 background threads to translate the LBR samples into a format that BOLT can use, and then single-threaded BOLT generates the optimized binary. BOLT, in particular, is quite CPU-intensive, causing a reduction in throughput just after the 100-second mark. In region 4, OCOLOS performs code replacement which entails a brief single-threaded stop-the-world phase of 669 milliseconds (see Table I for other benchmarks). After that, in region 5, MySQL’s parallel execution resumes with the optimized code in place lifting the performance to almost 6,000 tps. Sysbench also reports 95\(^{th}\) percentile tail latency for each 1-second window of execution. Analyzing a single representative run, the average 95\(^{th}\) transaction latency during region 1 is 1.00 milliseconds, degrading to a worst-case of 1.55 ms during regions 3 and 4, and improving to 0.73 ms on average in region 5.

Figure 7 shows that the performance impact of OCOLOS is modest, even during code replacement. As we discussed in Section VI-C1, OCOLOS can still perform well with as little as 1 second of profiling. Although we are already using the Lightning BOLT system [77] which has been optimized for lower execution times, there likely exist further opportunities to reduce region 3 costs by shifting some of BOLT’s work into an offline phase. Such optimizations do not matter for BOLT’s original offline setting, however, they would be beneficial for OCOLOS. Finally, there is scope to reduce OCOLOS’s pause time further by shifting more work to occur inside...
the target process via the OCOLOSLD_PRELOAD library and parallelizing the code replacement routines that currently execute serially.

3) End-to-End Overheads: Table II shows OCOLOSL’s overheads for code replacement. The intervals between code replacements are configurable with OCOLOSL; longer intervals amortize code replacement costs better but are less sensitive to application phases or input changes.

One way to evaluate OCOLOSL’s overheads in an end-to-end manner is to consider how long it takes OCOLOSL to “recover” the ground lost during code replacement. Considering MySQL read_only as an example (Figure 7), the steady state throughput of the original program is about 4,200 transactions per second, which OCOLOSL boosts to 5,850 tps after code replacement is complete. Taking the reduced throughput during code replacement into account, at 30 seconds after code replacement completes OCOLOSL has processed as many transactions as if we had run the original binary the entire time. All execution after this point is a net gain for OCOLOSL, so running for several minutes before the next code replacement is advisable in practice. With smaller speedups, OCOLOSL must run for longer before performing code replacement again. Moreover, if OCOLOSL hurts performance by a factor of a during code replacement which lasts for s seconds, and then boosts performance by a factor of b after code replacement completes, we should run the optimized code for at least as/b seconds to recover the ground lost during code replacement.

<table>
<thead>
<tr>
<th></th>
<th>MySQL</th>
<th>Mongo</th>
<th>MemS</th>
<th>Verilator</th>
</tr>
</thead>
<tbody>
<tr>
<td>perf2bolt time (sec)</td>
<td>28.186</td>
<td>26.624</td>
<td>12.918</td>
<td>4.181</td>
</tr>
<tr>
<td>llvm-bolt time (sec)</td>
<td>8.237</td>
<td>17.882</td>
<td>0.1404</td>
<td>1.935</td>
</tr>
<tr>
<td>replacement time (sec)</td>
<td>0.669</td>
<td>1.221</td>
<td>0.020</td>
<td>0.146</td>
</tr>
</tbody>
</table>

TABLE II: Fixed costs of code replacement

4) Microarchitectural Impacts: Next we investigate the microarchitectural causes of OCOLOSL’s performance benefits. Figure 8 shows a variety of front-end performance counter measurements, each represented as events per 1,000 instructions. The MySQL inputs along the x-axis are sorted from highest (left) to lowest (right) speedup with OCOLOSL to match the order in Figure 5. Moving from top to bottom in Figure 8, we see that OCOLOSL is able to achieve significant reductions in L1i and iTLB MPKI. All MySQL inputs also show large reductions in the number of taken branches; fewer taken branches means less pressure on branch prediction resources which may reduces mispredicted branches as well. Across all of these front-end metrics, OCOLOSL achieves results very similar to offline BOLT.

Somewhat surprisingly, the front-end metrics in Figure 8 often do not correlate particularly well with the speedup that OCOLOSL provides. To overcome this, we again turned to Intel’s TopDown [109] methodology. Using TopDown’s Front-End Latency and Retiring percentages, a simple linear regression can accurately determine workloads that will and won’t benefit from OCOLOSL (Figure 9). Moreover, with OCOLOSL’s online approach, even should identifying performance losses a priori prove challenging, we can always revert to C0 code to at least recover the original performance.

D. Batch Accelerator Mode

In this section, we examine the impact of BAM on a from-scratch build of the Clang compiler. In a large software build, BAM profiles the initial compiler executions to generate an optimized compiler binary that is tuned to the source program being compiled. A full Clang build contains 2,624 compiler executions in all. The dashed red line near the top of Figure 10 illustrates the running time of the original Clang build, executing parallel jobs via make -j. For the dashed orange line at the bottom, we aggregate profiling information from the entire build and feed it to BOLT, and then measure a fresh build using the resulting BOLTed binary. This represents a lower bound on the running time that BAM can achieve.

The green triangles (with a polynomial curve fit to them) show the performance of BOLT when we profile only a limited number of compiler executions (given on the x-axis), generating an optimized binary while measuring the time of a fresh build using this binary. The cost of collecting profiles and running BOLT is excluded; the optimized binary is available at the start of the build. These results show how well an ideal
BAM implementation can perform if it did not suffer from any profiling and optimizations overheads, revealing the marginal utility of extra profiling data.

Finally, the blue squares (and polynomial curve) show the performance achieved by BAM. We first observe that, even when profiling just one compiler execution, BAM provides a speedup of 1.09× over the original build. At first, profiling additional compiler executions leads to a speedup of up to 1.14×, as this profiling data is “worth the wait”. However, after about 5 executions BAM suffers diminishing returns from additional profiling for two reasons. First, the value of that profiling data is relatively low as shown by the decreasing slope of the green line. Second, as BAM waits for more profile data, it starts the optimization process later, losing out on opportunities to use the optimized binary. This opportunity cost increases over time, causing the BAM running time to eventually surpass that of the original build.

Ultimately, our BAM investigation demonstrates that the amount of profiling data needed to run PGO effectively is quite low, mirroring our results from Section VI-C1. BAM is able to leverage this property to accelerate the Clang build, without any changes to Clang or the build infrastructure.

VII. RELATED WORK

The performance implications of front-end stalls have inspired computer architecture and compiler researchers to propose numerous techniques for improving instruction locality. We divide this work into three categories and qualitatively compare these techniques against OCOLOS to describe how OCOLOS addresses their shortcomings.

Instruction prefetching mechanisms. Computer architects primarily aim to solve the front-end stall problem via instruction prefetching [4, 24, 25, 28, 31, 33, 42, 46, 47, 57, 58, 59, 68, 70, 87, 88, 92, 93, 94, 96, 97]. A plethora of such techniques, ranging from simpler next-line [97] and discontinuity [42, 81, 100, 101] prefetchers to sophisticated temporal [24, 25, 46, 47] (or record-and-replay [6]) prefetching, aim to strike a balance between performance and high metadata storage overhead. Branch predictor-guided prefetchers [87, 88] are extremely effective [40, 41, 58, 59] and consequently, have been adopted in many recent processors [32, 78, 95, 102]. Nevertheless, these state-of-the-art prefetchers fall short when applications contain a large number of taken branch instructions that exhaust the capacity of the branch predictor and BTB [25, 48, 58, 99]. OCOLOS can convert taken branches into not-taken ones, easing pressure on the branch predictor (Figure 8) and improving overall performance.

Profile-guided code layout optimizations. Compiler techniques to address the front-end stall problem mainly focus on improving instruction locality via code layout optimizations [10, 29, 34, 36, 61, 63, 65, 76, 77, 79, 86, 113]. These techniques perform basic-block reordering [72, 80], function reordering [75], and hot/warm/cold code splitting [12] (also known as function splitting [76]) using profiles collected from previous executions [27, 38]. While these techniques are extremely effective at improving instruction locality [6] and therefore widely adopted in today’s data centers [10, 76, 77], profile quality limits their ability to achieve close-to-optimal performance as we show in Section III-A. To address this limitation, OCOLOS always uses the best-quality profile from the current execution. Some managed language runtimes, like the HotSpot JVM [39], also perform PGO at run time, profiling the application running on the VM. While OCOLOS targets unmanaged languages instead, OCOLOS could complement a system like HotSpot by performing PGO on the running HotSpot binary itself.

Other systems [17, 26, 60] have also proposed run-time code optimization for unmanaged languages. ClangJIT [26] can perform C++ template specialization at run time, improving
performance and avoiding the latency and code bloat of producing all template specializations at compile time. BinOpt [17] can lift, at run time, the machine code of selected functions to LLVM IR, perform optimizations and recompile to machine code, and then replace the machine code with the optimized code and resume execution of the program. BinOpt requires application code changes to use its API to identify functions to optimize, unlike OCOLOS which operates transparently to the application. While BinOpt does not currently utilize profiling information, it could do so in principle. BinOpt’s use of LLVM IR as the optimization target would make it challenging to map machine-code-level profiling information to LLVM IR [36, 76], which is why tools like BOLT operate at the machine code level instead.

Static code layout optimizations. Evidence-based static code layout optimizations [7, 9, 15, 44, 66, 107] also aim to address the profile-sensitivity problem of profile-guided code layout optimizations. State-of-the-art static code layout optimizers mainly use machine learning techniques (e.g., deep neural networks [66, 69, 85] or decision trees [9, 15]) to find an optimal code layout. Despite using sophisticated machine learning techniques, such techniques fall short of the profile-guided techniques and provide only one-third of the speedups offered by the profile-guided code layout optimizers [69]. Therefore, in this work, we focus on improving the performance of these profile-guided techniques by applying them in an online manner with OCOLOS.

VIII. Conclusion

We have described the design and implementation of OCOLOS, the first online PGO system for unmanaged code. OCOLOS provides the performance benefits of a classic offline PGO compilation flow, however, applied to a running process. By operating at run time, OCOLOS always profiles the most up-to-date and relevant behavior of the program, and avoids problems with mapping the profile to a target binary that can frustrate offline PGO. We describe how OCOLOS’s design can perform run-time code replacement safely for unmanaged programs, with essentially only fixed costs paid at code replacement time. We evaluate OCOLOS on a range of workloads, from large multithreaded server applications to a single-threaded chip simulator and a large software build. We show that OCOLOS can provide speedups of up to 2.20×, all without requiring any changes to the applications being accelerated by OCOLOS.

Acknowledgments

We thank the anonymous reviewers for their insightful suggestions and feedback. This work was supported by generous gifts from Intel Labs, NSF/Intel joint grants #2010810 and #2011168, NSF #1942754, a Rackham Predoctoral Fellowship, and the Applications Driving Architectures (ADA) Research Center, a JUMP Center cosponsored by SRC and DARPA. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. We thank Maksim Panchenko and Guilherme Ottoni from Meta Inc. for helpful discussions about BOLT.

References

